Constraining the deep dynamic process beneath the Bangong-Nujiang suture zone: A case study from the early cretaceous trachytic rocks

[1]  Zhicai Zhu,et al.  Ca. 110 Ma adakite-like magmatism along the Bangong–Nujiang suture zone: Implications for crustal thickening and early uplift in the central Tibetan Plateau , 2021, Palaeogeography, Palaeoclimatology, Palaeoecology.

[2]  Wang Wei,et al.  Cretaceous magmatic rocks in the Nyima area, North Tibet: Constraints for the tectonic evolution of the Bangong-Nujiang suture zone , 2021 .

[3]  Haoruo Wu,et al.  Simultaneous growth and reworking of the Lhasa basement: A case study from Early Cretaceous magmatism in the north-central Tibet , 2020 .

[4]  Haoruo Wu,et al.  Late Cretaceous adakitic rocks from the western Tibetan Plateau: implications for the subduction of the Neo-Tethys Ocean , 2020, International Geology Review.

[5]  Qing-guo Zhai,et al.  Transition from oceanic subduction to continental collision recorded in the Bangong-Nujiang suture zone: Insights from Early Cretaceous magmatic rocks in the north-central Tibet , 2020 .

[6]  Xiao Wenjiao,et al.  Tethyan geodynamics , 2020, Acta Petrologica Sinica.

[7]  Peng Sun,et al.  Late early Cretaceous peraluminous biotite granites along the Bangong–Nujiang suture zone, Central Tibet: Products derived by partial melting of metasedimentary rocks? , 2019, Lithos.

[8]  Haoruo Wu,et al.  Closure of the Bangong–Nujiang Tethyan Ocean in the central Tibet: Results from the provenance of the Duoni Formation , 2019, Journal of Sedimentary Research.

[9]  Wei Li,et al.  Early Cretaceous sedimentary evolution of the northern Lhasa terrane and the timing of initial Lhasa-Qiangtang collision , 2019, Gondwana Research.

[10]  W. Xiao,et al.  Cyclical one-way continental rupture-drift in the Tethyan evolution: Subduction-driven plate tectonics , 2019, Science China Earth Sciences.

[11]  A. Matsuoka,et al.  Late Anisian radiolarian assemblages from the Yarlung‐Tsangpo Suture Zone in the Jinlu area, Zedong, southern Tibet: Implications for the evolution of Neotethys , 2019, Island Arc.

[12]  Xiumian Hu,et al.  The disappearance of a Late Jurassic remnant sea in the southern Qiangtang Block (Shamuluo Formation, Najiangco area): Implications for the tectonic uplift of central Tibet , 2018, Palaeogeography, Palaeoclimatology, Palaeoecology.

[13]  Jun Chen,et al.  Temporal and spatial variations of Late Mesozoic granitoids in the SW Qiangtang, Tibet: Implications for crustal architecture, Meso-Tethyan evolution and regional mineralization , 2018, Earth-Science Reviews.

[14]  Qiang-tai Huang,et al.  Origin and tectonic implications of the Shiquanhe high-Mg andesite, western Bangong suture, Tibet , 2018, Gondwana Research.

[15]  H. Sinclair,et al.  Early Cretaceous palaeogeographic evolution of the Coqen Basin in the Lhasa Terrane, southern Tibetan Plateau , 2017 .

[16]  Qing-guo Zhai,et al.  Late Early Cretaceous magmatic rocks (118–113 Ma) in the middle segment of the Bangong–Nujiang suture zone, Tibetan Plateau: Evidence of lithospheric delamination , 2017 .

[17]  Ming Wang,et al.  Reconstructing in space and time the closure of the middle and western segments of the Bangong–Nujiang Tethyan Ocean in the Tibetan Plateau , 2017, International Journal of Earth Sciences.

[18]  R. Shi,et al.  A syn-collisional model for Early Cretaceous magmatism in the northern and central Lhasa subterranes , 2017 .

[19]  N. Evans,et al.  Tectono-magmatic evolution of Late Jurassic to Early Cretaceous granitoids in the west central Lhasa subterrane, Tibet , 2016 .

[20]  L. Ding,et al.  Petrogenesis of Middle–Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa terrane: Implications for early subduction of Neo-Tethyan oceanic lithosphere , 2016 .

[21]  Peter A. Cawood,et al.  Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction , 2016 .

[22]  Wangchun Xu,et al.  Adakite-like geochemical signature produced by amphibole-dominated fractionation of arc magmas: An example from the Late Cretaceous magmatism in Gangdese belt, south Tibet , 2015 .

[23]  R. Shi,et al.  Late Triassic island-arc--back-arc basin development along the Bangong-Nujiang suture zone (central Tibet): Geological, geochemical and chronological evidence from volcanic rocks , 2015 .

[24]  Cai Li,et al.  Early Cretaceous adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet: Implications for slab roll-back and subsequent slab break-off of the lithosphere of the Bangong–Nujiang Ocean , 2015 .

[25]  M. Santosh,et al.  Slab breakoff triggered ca. 113 Ma magmatism around Xainza area of the Lhasa Terrane, Tibet☆ , 2014 .

[26]  Kuo‐Lung Wang,et al.  SHRIMP zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of a mafic dyke swarm in the Qiangtang terrane, northern Tibet and geodynamic implications , 2013 .

[27]  Hong-lin Yuan,et al.  Compositional diversity of ca. 110 Ma magmatism in the northern Lhasa Terrane, Tibet: Implications for the magmatic origin and crustal growth in a continent–continent collision zone , 2013 .

[28]  Z. Hou,et al.  The origin and pre-Cenozoic evolution of the Tibetan Plateau , 2013 .

[29]  G. Pan,et al.  Tectonic evolution of the Qinghai-Tibet Plateau , 2012 .

[30]  W. Griffin,et al.  Melt/mantle mixing produces podiform chromite deposits in ophiolites : implications of Re-Os systematics in the Dongqiao Neo-tethyan ophiolite, northern Tibet , 2012 .

[31]  C. Faccenna,et al.  Mantle conveyor beneath the Tethyan collisional belt , 2011 .

[32]  F. Huang,et al.  Geochemical contrasts between early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China: Implications for petrogenesis and Cu–Au mineralization , 2010 .

[33]  Z. Hou,et al.  The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth , 2010 .

[34]  B. Dai,et al.  Melting of enriched Archean subcontinental lithospheric mantle: Evidence from the ca 1760Ma volcanic rocks of the Xiong'er Group, southern margin of the North China Craton , 2010 .

[35]  H. Martin,et al.  THE ORIGIN OF FERROAN-POTASSIC A-TYPE GRANITOIDS: THE CASE OF THE HORNBLENDE-BIOTITE GRANITE SUITE OF THE MESOPROTEROZOIC MAZURY COMPLEX, NORTHEASTERN POLAND , 2010 .

[36]  Wei-Qiang Ji,et al.  Detrital zircon U–Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet , 2010 .

[37]  Shan Gao,et al.  Continental and Oceanic Crust Recycling-induced Melt^Peridotite Interactions in the Trans-North China Orogen: U^Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths , 2010 .

[38]  Fu-Yuan Wu,et al.  Geochemical investigation of Early Cretaceous igneous rocks along an east–west traverse throughout the central Lhasa Terrane, Tibet , 2009 .

[39]  Wei-Qiang Ji,et al.  Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet , 2009 .

[40]  G. Dong,et al.  Early cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet: Products of slab melting and subsequent melt-peridotite interaction? , 2009 .

[41]  J. Miller,et al.  Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS , 2008 .

[42]  Wei Yang,et al.  Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning: Implications for lithospheric thinning of the North China Craton , 2008 .

[43]  Mei-Fu Zhou,et al.  Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China : Their relationship to the Emeishan mantle plume , 2007 .

[44]  V. Garduño-Monroy,et al.  Geology and geochemistry characteristics of the Chiapanecan Volcanic Arc (Central Area), Chiapas Mexico , 2007 .

[45]  D. Champion,et al.  An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution , 2005 .

[46]  U. Schaltegger,et al.  The Composition of Zircon and Igneous and Metamorphic Petrogenesis , 2003 .

[47]  R. Kilian,et al.  Constraints on the interaction between slab melts and the mantle wedge from adakitic glass in peridotite xenoliths , 2002 .

[48]  An Yin,et al.  Geologic Evolution of the Himalayan-Tibetan Orogen , 2000 .

[49]  N. Petford,et al.  Na-rich Partial Melts from Newly Underplated Basaltic Crust: the Cordillera Blanca Batholith, Peru , 1996 .

[50]  A. Hofmann,et al.  Hydrous, silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas , 1995, Nature.

[51]  I. Metcalfe Gondwanaland origin, dispersion, and accretion of East and Southeast Asian continental terranes , 1994 .

[52]  M. Drummond,et al.  Derivation of some modern arc magmas by melting of young subducted lithosphere , 1990, Nature.

[53]  J. Pearce,et al.  The ophiolites of the Tibetan Geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986) , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[54]  R. W. Le Maitre,et al.  A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram , 1986 .

[55]  J. Gill Orogenic Andesites and Plate Tectonics , 1981 .

[56]  A. Şengör,et al.  Mid-Mesozoic closure of Permo–Triassic Tethys and its implications , 1979, Nature.

[57]  E. Middlemost The basalt clan , 1975 .