Complexiton solutions to the Korteweg–de Vries equation

Abstract A novel class of explicit exact solutions to the Korteweg–de Vries equation is presented through its bilinear form. Such solutions possess singularities of combinations of trigonometric function waves and exponential function waves which have different travelling speeds of new type. The functions used in the Wronskian determinants are derived from eigenfunctions of the Schrodinger spectral problem associated with complex eigenvalues, and thus the resulting solutions are called complexiton solutions. Illustrative examples of complexiton solutions are exhibited.

[1]  Junkichi Satsuma,et al.  A Wronskian Representation of N-Soliton Solutions of Nonlinear Evolution Equations , 1979 .

[2]  J. Nimmo,et al.  Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The wronskian technique , 1983 .

[3]  P. C. W. Fung A KdV soliton propagating with varying velocity , 1984 .

[4]  J. Satsuma Solitons and Rational Solutions of Nonlinear Evolution Equations (Theory of Nonlinear Waves) , 1978 .

[5]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[6]  Negaton and positon solutions of the KdV and mKdV hierarchy , 1995, hep-th/9505133.

[7]  V. Zakharov,et al.  Korteweg-de Vries equation: A completely integrable Hamiltonian system , 1971 .

[8]  Wen-Xiu Ma,et al.  THE BI-HAMILTONIAN STRUCTURE OF THE PERTURBATION EQUATIONS OF THE KDV HIERARCHY , 1996 .

[9]  S. Sirianunpiboon,et al.  A note on the wronskian form of solutions of the KdV equation , 1988 .

[10]  P. Drazin,et al.  Solitons: An Introduction , 1989 .

[11]  C. S. Gardner,et al.  Korteweg-devries equation and generalizations. VI. methods for exact solution , 1974 .

[12]  J. Nimmo,et al.  Soliton solutions of the Korteweg de Vries and the Kadomtsev-Petviashvili equations: the Wronskian technique , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  C. S. Gardner,et al.  Korteweg‐de Vries Equation and Generalizations. II. Existence of Conservation Laws and Constants of Motion , 1968 .

[14]  Franco Magri,et al.  A Simple model of the integrable Hamiltonian equation , 1978 .

[15]  V. Matveev,et al.  Generalized Wronskian formula for solutions of the KdV equations: first applications , 1992 .

[16]  M. Kovalyov Basic motions of the Korteweg-De Vries equation , 1998 .

[17]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .