Complexiton solutions to the Korteweg–de Vries equation
暂无分享,去创建一个
Wen-Xiu Ma | Wenxiu Ma | W. Ma
[1] Junkichi Satsuma,et al. A Wronskian Representation of N-Soliton Solutions of Nonlinear Evolution Equations , 1979 .
[2] J. Nimmo,et al. Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The wronskian technique , 1983 .
[3] P. C. W. Fung. A KdV soliton propagating with varying velocity , 1984 .
[4] J. Satsuma. Solitons and Rational Solutions of Nonlinear Evolution Equations (Theory of Nonlinear Waves) , 1978 .
[5] R. Hirota. Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .
[6] Negaton and positon solutions of the KdV and mKdV hierarchy , 1995, hep-th/9505133.
[7] V. Zakharov,et al. Korteweg-de Vries equation: A completely integrable Hamiltonian system , 1971 .
[8] Wen-Xiu Ma,et al. THE BI-HAMILTONIAN STRUCTURE OF THE PERTURBATION EQUATIONS OF THE KDV HIERARCHY , 1996 .
[9] S. Sirianunpiboon,et al. A note on the wronskian form of solutions of the KdV equation , 1988 .
[10] P. Drazin,et al. Solitons: An Introduction , 1989 .
[11] C. S. Gardner,et al. Korteweg-devries equation and generalizations. VI. methods for exact solution , 1974 .
[12] J. Nimmo,et al. Soliton solutions of the Korteweg de Vries and the Kadomtsev-Petviashvili equations: the Wronskian technique , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[13] C. S. Gardner,et al. Korteweg‐de Vries Equation and Generalizations. II. Existence of Conservation Laws and Constants of Motion , 1968 .
[14] Franco Magri,et al. A Simple model of the integrable Hamiltonian equation , 1978 .
[15] V. Matveev,et al. Generalized Wronskian formula for solutions of the KdV equations: first applications , 1992 .
[16] M. Kovalyov. Basic motions of the Korteweg-De Vries equation , 1998 .
[17] Mark J. Ablowitz,et al. Solitons and the Inverse Scattering Transform , 1981 .