An Exponential Time 2-Approximation Algorithm for Bandwidth
暂无分享,去创建一个
[1] Uriel Feige,et al. Approximating the Bandwidth of Caterpillars , 2005, APPROX-RANDOM.
[2] Ryan Williams,et al. Confronting hardness using a hybrid approach , 2006, SODA '06.
[3] Walter Unger,et al. The complexity of the approximation of the bandwidth problem , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[4] David S. Johnson,et al. COMPLEXITY RESULTS FOR BANDWIDTH MINIMIZATION , 1978 .
[5] Russell Impagliazzo,et al. On the Complexity of k-SAT , 2001, J. Comput. Syst. Sci..
[6] Marcin Pilipczuk,et al. Exponential-Time Approximation of Hard Problems , 2008, ArXiv.
[7] M. Fellows,et al. Beyond NP-completeness for problems of bounded width: hardness for the W hierarchy , 1994, Symposium on the Theory of Computing.
[8] Marcin Pilipczuk,et al. Exact and Approximate Bandwidth , 2009, ICALP.
[9] Santosh S. Vempala,et al. Semi-definite relaxations for minimum bandwidth and other vertex-ordering problems , 2000, Theor. Comput. Sci..
[10] Uriel Feige,et al. Coping with the NP-Hardness of the Graph Bandwidth Problem , 2000, SWAT.
[11] Michael R. Fellows,et al. Beyond NP-completeness for problems of bounded width (extended abstract): hardness for the W hierarchy , 1994, STOC '94.
[12] Ge Xia,et al. Linear FPT reductions and computational lower bounds , 2004, STOC '04.
[13] Omid Amini,et al. Counting Subgraphs via Homomorphisms , 2009, ICALP.
[14] Christos H. Papadimitriou,et al. The NP-Completeness of the bandwidth minimization problem , 1976, Computing.
[15] Uriel Feige,et al. Approximating the Bandwidth via Volume Respecting Embeddings , 2000, J. Comput. Syst. Sci..
[16] Marcin Pilipczuk,et al. Faster Exact Bandwidth , 2008, WG.
[17] Santosh S. Vempala,et al. On Euclidean Embeddings and Bandwidth Minimization , 2001, RANDOM-APPROX.
[18] James B. Saxe,et al. Dynamic-Programming Algorithms for Recognizing Small-Bandwidth Graphs in Polynomial Time , 1980, SIAM J. Algebraic Discret. Methods.
[19] James R. Lee. Volume Distortion for Subsets of Euclidean Spaces , 2009, Discret. Comput. Geom..
[20] B. Monien. The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete , 1986 .