Matter non-conservation in the universe and dynamical dark energy

In an expanding universe, the vacuum energy density ρΛ is expected to be a dynamical quantity. In quantum field theory in curved spacetime, ρΛ should exhibit a slow evolution, determined by the expansion rate of the universe H. Recent measurements on the time variation of the fine-structure constant and of the proton–electron mass ratio suggest that the basic quantities of the standard model, such as the QCD scale parameter ΛQCD, may not be conserved in the course of the cosmological evolution. The masses of the nucleons mN and of the atomic nuclei would also be affected. Matter is not conserved in such a universe. These measurements can be interpreted as a leakage of matter into vacuum or vice versa. We point out that the amount of leakage necessary to explain the measured value of could be of the same order of magnitude as the observationally allowed value of , with a possible contribution from the dark matter particles. The dark energy in our universe could be the dynamical vacuum energy in interaction with ordinary baryonic matter as well as with dark matter.

[1]  S. Basilakos,et al.  Generalizing the running vacuum energy model and comparing with the entropic-force models , 2012, 1204.4806.

[2]  V. M. Ghete,et al.  Search for the standard model Higgs boson decaying into two photons in $pp$ collisions at $\sqrt{s}=7$ TeV , 2012 .

[3]  M. L. Ferrer,et al.  Search for the Standard Model Higgs boson in the decay channel with 4.8 fb1 of pp collision data at with ATLAS , 2012 .

[4]  G. Bruno,et al.  Search for the standard model Higgs boson decaying to W + W - in the fully leptonic final state in pp collisions at √{ s} = 7 TeV , 2012 .

[5]  J. T. Childers,et al.  Search for the standard model Higgs boson in the diphoton decay channel with 4.9 fb(-1) of pp collision data at √s=7 TeV with ATLAS. , 2012, Physical review letters.

[6]  V. M. Ghete,et al.  Search for the Standard Model Higgs Boson in the Decay Channel H→ZZ→4l in pp Collisions at √s=7 TeV , 2012 .

[7]  O. Davignon,et al.  Search for Standard Model Higgs boson in the two-photon final state in ATLAS , 2012, 1202.1636.

[8]  V. M. Ghete,et al.  Search for a Higgs boson in the decay channel H → ZZ(*) → q$ \overline {\text{q}} $ℓ−ℓ+ in pp collisions at $ \sqrt {s} = 7 $TeV , 2012 .

[9]  V. M. Ghete,et al.  Combined results of searches for the standard model Higgs boson in pp collisions at √s = 7 TeV , 2012 .

[10]  T. Chiba The Constancy of the Constants of Nature: Updates , 2011, 1111.0092.

[11]  J. Solà Dynamical cosmological term in modified gravity , 2011 .

[12]  F. Bauer,et al.  Confronting the relaxation mechanism for a large cosmological constant with observations , 2011, 1109.4739.

[13]  F. Bauer,et al.  RELAXING A LARGE COSMOLOGICAL CONSTANT IN THE ASTROPHYSICAL DOMAIN , 2011, 1105.1030.

[14]  H. Fritzsch Fundamental constants and their time variation , 2011 .

[15]  Miao Li,et al.  Dark Energy , 2011, Dialogue: A Journal of Mormon Thought.

[16]  M. Plionis,et al.  Hubble expansion and structure formation in the ``running FLRW model'' of the cosmic evolution , 2011, 1103.4632.

[17]  J. Solà Cosmologies with a time dependent vacuum , 2011, 1102.1815.

[18]  Jean-Philippe Uzan,et al.  Varying Constants, Gravitation and Cosmology , 2010, Living reviews in relativity.

[19]  F. Bauer,et al.  Dynamically avoiding fine-tuning the cosmological constant: the ``Relaxed Universe'' , 2010, 1006.3944.

[20]  H. Fritzsch The fundamental constants in physics and their possible time variation , 2010 .

[21]  M. Plionis,et al.  Spherical collapse model in time varying vacuum cosmologies , 2010, 1005.5592.

[22]  A. Moss,et al.  LET'S TALK ABOUT VARYING G , 2010, 1004.2066.

[23]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2010, 1001.4538.

[24]  I. Shapiro,et al.  Cosmic perturbations with running G and Λ , 2010, 1001.0259.

[25]  I. Shapiro,et al.  On the possible running of the cosmological “constant” , 2009, 0910.4925.

[26]  L. Parker,et al.  Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity , 2009 .

[27]  M. Plionis,et al.  Hubble expansion and structure formation in time varying vacuum models , 2009, 0907.4555.

[28]  J. Solà,et al.  Dark energy perturbations and cosmic coincidence , 2008, 0809.3462.

[29]  G. Miele,et al.  Primordial nucleosynthesis: From precision cosmology to fundamental physics , 2008, 0809.0631.

[30]  I. Shapiro,et al.  Can the cosmological "constant" run? - It may run , 2008, 0808.0315.

[31]  R. Carswell,et al.  Stringent null constraint on cosmological evolution of the proton-to-electron mass ratio. , 2008, Physical review letters.

[32]  V. Sahni,et al.  Republication of: The cosmological constant and the theory of elementary particles (By Ya. B. Zeldovich) , 2008 .

[33]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[34]  T Zelevinsky,et al.  New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks. , 2008, Physical review letters.

[35]  J. Solà Dark energy: a quantum fossil from the inflationary universe? , 2007, 0710.4151.

[36]  X. Calmet,et al.  A Time Variation of Proton-Electron Mass Ratio and Grand Unification , 2006, astro-ph/0605232.

[37]  P. Petitjean,et al.  Indication of a cosmological variation of the proton-electron mass ratio based on laboratory measurement and reanalysis of H2 spectra. , 2006, Physical review letters.

[38]  E. Copeland,et al.  Dynamics of dark energy , 2006, hep-th/0603057.

[39]  H. Nikolić,et al.  Dynamical dark energy with a constant vacuum energy density , 2006, astro-ph/0601598.

[40]  J. Alcaniz,et al.  Interpreting cosmological vacuum decay , 2005, astro-ph/0507372.

[41]  Pune,et al.  A new constraint on the time dependence of the proton-to-electron mass ratio - Analysis of the Q 0347-383 and Q 0405-443 spectra , 2005, astro-ph/0507174.

[42]  H. Stefancic,et al.  DYNAMICAL DARK ENERGY OR VARIABLE COSMOLOGICAL PARAMETERS , 2005, astro-ph/0507110.

[43]  H. Stefancic,et al.  Effective equation of state for dark energy: Mimicking quintessence and phantom energy through a variable Λ , 2005, astro-ph/0505133.

[44]  Peng Wang,et al.  Can vacuum decay in our universe? , 2004, astro-ph/0408495.

[45]  Anthony W. Thomas,et al.  Limits on variations of the quark masses, QCD scale, and fine structure constant , 2004 .

[46]  W. Ubachs,et al.  Highly accurate H2 Lyman and Werner band laboratory measurements and an improved constraint on a cosmological variation of the proton-to-electron mass ratio. , 2004, Physical review letters.

[47]  P. Petitjean,et al.  Probing the cosmological variation of the fine - structure constant: Results based on VLT - UVES sample , 2004, astro-ph/0401094.

[48]  I. Maksimovic,et al.  New limits on the drift of fundamental constants from laboratory measurements. , 2003, Physical review letters.

[49]  P. Ruiz-Lapuente,et al.  Testing the running of the cosmological constant with type Ia supernovae at high z , 2003, hep-ph/0311171.

[50]  D. Reimers,et al.  Probing the variability of the fine-structure constant with the VLT/UVES , 2003, astro-ph/0311280.

[51]  J. Prochaska,et al.  Constraining variations in the fine-structure constant, quark masses and the strong interaction , 2003, astro-ph/0310318.

[52]  M. Murphy,et al.  Further evidence for a variable fine-structure constant from Keck/HIRES QSO absorption spectra , 2003, astro-ph/0306483.

[53]  P. Langacker Time variation of fundamental constants as a probe of new physics , 2003, hep-ph/0304093.

[54]  P. Ruiz-Lapuente,et al.  Variable cosmological constant as a Planck scale effect , 2003, astro-ph/0303306.

[55]  D. Wineland,et al.  Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock. , 2002, Physical review letters.

[56]  J. Bjorken Cosmology and the standard model , 2002, hep-th/0210202.

[57]  J. Rich Experimental consequences of time variations of the fundamental constants , 2002, physics/0209016.

[58]  J. Bekenstein Fine-structure constant variability, equivalence principle, and cosmology , 2002, gr-qc/0208081.

[59]  T. Davis,et al.  Cosmology: Black holes constrain varying constants , 2002, Nature.

[60]  P. Peebles,et al.  The Cosmological Constant and Dark Energy , 2002, astro-ph/0207347.

[61]  J. Uzan The fundamental constants and their variation: observational and theoretical status , 2002, hep-ph/0205340.

[62]  Y. Fujii,et al.  Nuclear Data in Oklo and Time-Variability of Fundamental Coupling Constants , 2002, hep-ph/0205206.

[63]  X. Calmet,et al.  Symmetry breaking and time variation of gauge couplings , 2002, hep-ph/0204258.

[64]  P. Langacker,et al.  Implications of gauge unification for time variation of the fine structure constant , 2001, hep-ph/0112233.

[65]  X. Calmet,et al.  The cosmological evolution of the nucleon mass and the electroweak coupling constants , 2001, hep-ph/0112110.

[66]  H. Sandvik,et al.  Behavior of varying-alpha cosmologies , 2001, astro-ph/0109414.

[67]  H. Sandvik,et al.  A simple cosmology with a varying fine structure constant. , 2001, Physical review letters.

[68]  J. Prochaska,et al.  Further evidence for cosmological evolution of the fine structure constant. , 2000, Physical review letters.

[69]  R. G. Vishwakarma Consequences on variable Λ-models from distant type Ia supernovae and compact radio sources , 2000, astro-ph/0012492.

[70]  Sean M. Carroll The Cosmological Constant , 2000, Living reviews in relativity.

[71]  V.N.Lukash The very early Universe , 1999, astro-ph/9910009.

[72]  L. Ibáñez,et al.  Aspects of type I string phenomenology , 1998, hep-ph/9812397.

[73]  J. Barrow,et al.  Varying-α theories and solutions to the cosmological problems , 1998, astro-ph/9811072.

[74]  Y. Fujii,et al.  The nuclear interaction at Oklo 2 billion years ago , 1998, hep-ph/9809549.

[75]  J. Overduin,et al.  Evolution of the scale factor with a variable cosmological term , 1998, astro-ph/9805260.

[76]  F. Dyson,et al.  The Oklo bound on the time variation of the fine-structure constant revisited , 1996, hep-ph/9606486.

[77]  J. Solà Scale gauge symmetry and the standard model , 1990 .

[78]  J. Solà The cosmological constant and the fate of the cosmon in Weyl conformal gravity , 1989 .

[79]  S. Barr,et al.  Attempt at a classical cancellation of the cosmological constant. , 1987, Physical review. D, Particles and fields.

[80]  C. Wetterich,et al.  Adjusting the cosmological constant dynamically: Cosmons and a new force weaker than gravity , 1987 .

[81]  Ford Cosmological-constant damping by unstable scalar fields. , 1987, Physical review. D, Particles and fields.

[82]  L. Abbott A mechanism for reducing the value of the cosmological constant , 1985 .

[83]  A. Shlyakhter Direct test of the constancy of fundamental nuclear constants , 1976, Nature.

[84]  R. Dicke,et al.  Mach's principle and a relativistic theory of gravitation , 1961 .

[85]  P. Jordan Formation of the Stars and Development of the Universe , 1949, Nature.

[86]  P. Jordan Über die kosmologische Konstanz der Feinstrukturkonstanten , 1939 .

[87]  P. Jordan,et al.  Die physikalischen Weltkonstanten , 1937, Naturwissenschaften.

[88]  P. Dirac The Cosmological Constants , 1937, Nature.

[89]  W. Marsden I and J , 2012 .

[90]  T. Jacobsen Fundamental Constants , 2001 .

[91]  Steven Weinberg,et al.  The Cosmological Constant Problem , 1989 .

[92]  Y. Zel’dovich Cosmological Constant and Elementary Particles , 1967 .

[93]  M. Livio,et al.  Telescope: Evidence for past Deceleration and Constraints on Dark Energy Evolution , 2022 .