Vortex Motion for the Landau-Lifshitz-Gilbert Equation with Spin-Transfer Torque
暂无分享,去创建一个
[1] Giovanni Alberti,et al. Variational convergence for functionals of Ginzburg-Landau type. , 2005 .
[2] Jean-Michel Coron,et al. Harmonic maps with defects , 1986 .
[3] A. N. Bogdanov,et al. Magnetic Domains. The Analysis of Magnetic Microstructures , 1999 .
[4] Chang Kungching,et al. Heat flow and boundary value problem for harmonic maps , 1989 .
[5] Daniel Spirn,et al. Refined Jacobian Estimates and Gross–Pitaevsky Vortex Dynamics , 2008 .
[6] A. Thiele. Steady-State Motion of Magnetic Domains , 1973 .
[7] Roger Moser,et al. Moving boundary vortices for a thin‐film limit in micromagnetics , 2005 .
[8] Jie Qing,et al. Bubbling of the heat flows for harmonic maps from surfaces , 1997 .
[9] Christof Melcher,et al. Thin-Film Limits for Landau-Lifshitz-Gilbert Equations , 2010, SIAM J. Math. Anal..
[10] Felix Otto,et al. Wave-type dynamics in ferromagnetic thin films and the motion of Néel walls , 2007 .
[11] Ian Tice,et al. Ginzburg‐Landau vortex dynamics driven by an applied boundary current , 2009, 0907.1000.
[12] Sylvia Serfaty,et al. A product-estimate for Ginzburg–Landau and corollaries , 2004 .
[13] Y Suzuki,et al. Micromagnetic understanding of current-driven domain wall motion in patterned nanowires , 2005 .
[14] Matthias Kurzke,et al. Dynamics for ginzburg-landau vortices under a mixed flow , 2009 .
[15] H. Brezis,et al. Ginzburg-Landau Vortices , 1994 .
[16] Fanghua Lin,et al. Static Theory for Planar Ferromagnets and Antiferromagnets , 2001 .
[17] Lev Davidovich Landau,et al. ON THE THEORY OF THE DISPERSION OF MAGNETIC PERMEABILITY IN FERROMAGNETIC BODIES , 1935 .
[18] Jalal Shatah,et al. Soliton dynamics in planar ferromagnets and anti-ferromagnets. , 2003, Journal of Zhejiang University. Science.
[19] Michael Struwe,et al. On the evolution of harmonic mappings of Riemannian surfaces , 1985 .
[20] Robert L. Jerrard,et al. Ginzburg-landau vortices: weak stability and schrödinger equation dynamics , 1999 .
[21] T. Gilbert. A phenomenological theory of damping in ferromagnetic materials , 2004, IEEE Transactions on Magnetics.
[22] Evelyne Miot,et al. Dynamics of vortices for the complex Ginzburg–Landau equation , 2008, 0810.4782.
[23] Boling Guo,et al. The Landau-Lifshitz equation of the ferromagnetic spin chain and harmonic maps , 1993 .
[24] Matthias Kurzke,et al. The gradient flow motion of boundary vortices , 2007 .
[25] Fanghua Lin,et al. Energy identity of harmonic map flows from surfaces at finite singular time , 1998 .
[26] Itai Shafrir,et al. ON NEMATICS STABILIZED BY A LARGE EXTERNAL FIELD , 1999 .
[27] S. Zhang,et al. Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. , 2004, Physical review letters.
[28] Yoshichika Otani,et al. Magnetic Vortex Dynamics , 2008 .
[29] Matthias Kurzke,et al. Γ-Stability and Vortex Motion in Type II Superconductors , 2010 .
[30] C. M. Schneider,et al. Current-induced magnetic vortex core switching in a Permalloy nanodisk , 2007, cond-mat/0702048.
[31] I. N. Krivorotov,et al. Magnetic vortex oscillator driven by d.c. spin-polarized current , 2007, cond-mat/0702253.
[32] Matthias W. Kurzke,et al. Gamma-Stability and Vortex Motion in Type II Superconductors , 2009 .
[33] Guido Meier,et al. Harmonic oscillator model for current-and field-driven magnetic vortices , 2007, 0710.0532.
[34] D. L. Huber,et al. Dynamics of spin vortices in two-dimensional planar magnets , 1982 .
[35] J. Eells,et al. A Report on Harmonic Maps , 1978 .
[36] P. Harpes,et al. Uniqueness and bubbling of the 2-dimensional Landau-Lifshitz flow , 2004 .
[37] Gang Tian,et al. Energy identity for a class of approximate harmonic maps from surfaces , 1995 .
[38] Ian Tice,et al. Ginzburg–Landau Vortex Dynamics with Pinning and Strong Applied Currents , 2010, 1003.5864.
[39] Peter M. Topping,et al. Repulsion and quantization in almost-harmonic maps, and asymptotics of the harmonic map flow , 2004 .
[40] C. H. Back,et al. Magnetic vortex core reversal by excitation with short bursts of an alternating field , 2006, Nature.
[41] Matthias Kurzke,et al. Ginzburg–Landau Vortices Driven by the Landau–Lifshitz–Gilbert Equation , 2011 .