A Robust Background Subtraction Approach Based on Daubechies Complex Wavelet Transform

This paper describes a simple and robust approach for background subtraction in Daubechies complex wavelet domain. A background subtraction approach exploiting noise resilience capability of wavelet domain combined with local spatial coherence and median filter in the training stage is proposed. The effectiveness of the proposed approach is demonstrated via qualitative and quantitative evaluation measures on both indoor and outdoor video sequences. The experimental results illustrate that the proposed approach outperforms state-of-the-art methods.

[1]  Jean-Marc Lina,et al.  Image Processing with Complex Daubechies Wavelets , 1997, Journal of Mathematical Imaging and Vision.

[2]  Marko Heikkilä,et al.  A texture-based method for modeling the background and detecting moving objects , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[4]  Itaru Kitahara,et al.  Robust Silhouette Extraction Technique Using Background Subtraction , 2007 .

[5]  Fang-Hsuan Cheng,et al.  Real time multiple objects tracking and identification based on discrete wavelet transform , 2006, Pattern Recognit..

[6]  Itaru Kitahara,et al.  Robust foreground extraction technique using background subtraction with multiple thresholds , 2007 .

[7]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Yiwei Wang,et al.  Moving object tracking in video , 2000, Proceedings 29th Applied Imagery Pattern Recognition Workshop.

[9]  L. Davis,et al.  Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002, Proc. IEEE.

[10]  J.-C. Huang,et al.  Double-change-detection method for wavelet-based moving-object segmentation , 2004 .

[11]  Ferdinand van der Heijden,et al.  Efficient adaptive density estimation per image pixel for the task of background subtraction , 2006, Pattern Recognit. Lett..

[12]  Sidney S. Fels,et al.  Evaluation of Background Subtraction Algorithms with Post-Processing , 2008, 2008 IEEE Fifth International Conference on Advanced Video and Signal Based Surveillance.

[13]  Y.-P. Guan,et al.  Spatio-temporal motion-based foreground segmentation and shadow suppression , 2010 .

[14]  W.-S. Hsieh,et al.  Wavelet-based moving object segmentation , 2003 .

[15]  Massimo Piccardi,et al.  Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).