Characterizing Quantum Microwave Radiation and its Entanglement with Superconducting Qubits

Recent progress in the development of superconducting circuits has allowed for realizing interesting sources of nonclassical radiation at microwave frequencies. Here, we discuss field quadrature detection schemes for the experimental characterization of itinerant microwave photon fields and their entanglement correlations with stationary qubits. In particular, we present joint state tomography methods of a radiation field mode and a two-level system. Including the case of finite quantum detection efficiency, we relate measured photon field statistics to generalized quasi-probability distributions and statistical moments. We also present maximum-likelihood methods to reconstruct density matrices from measured field quadrature histograms.

[1]  H. Weinfurter,et al.  Observation of entanglement of a single photon with a trapped atom. , 2006, Physical review letters.

[2]  G. C. Hilton,et al.  Amplification and squeezing of quantum noise with a tunable Josephson metamaterial , 2008, 0806.0659.

[3]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[4]  S A Babichev,et al.  Homodyne tomography characterization and nonlocality of a dual-mode optical qubit. , 2004, Physical review letters.

[5]  H. Carmichael Statistical Methods in Quantum Optics 1 , 1999 .

[6]  Kevin Cahill,et al.  Ordered Expansions in Boson Amplitude Operators , 1969 .

[7]  Hendrik B. Geyer,et al.  Journal of Physics A - Mathematical and General, Special Issue. SI Aug 11 2006 ?? Preface , 2006 .

[8]  M. Kim QUASIPROBABILITY FUNCTIONS MEASURED BY PHOTON STATISTICS OF AMPLIFIED SIGNAL FIELDS , 1997 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  G. Fève,et al.  Hanbury Brown-Twiss correlations to probe the population statistics of GHz photons emitted by conductors. , 2004, Physical review letters.

[11]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[12]  M R Delbecq,et al.  Coupling a quantum dot, fermionic leads, and a microwave cavity on a chip. , 2011, Physical review letters.

[13]  J J García-Ripoll,et al.  Microwave photon detector in circuit QED. , 2008, Physical review letters.

[14]  Zdenek Hradil,et al.  Tomography for quantum diagnostics , 2008 .

[15]  Jeffrey H. Shapiro,et al.  Optical communication with two-photon coherent states-Part III: Quantum measurements realizable with photoemissive detectors , 1980, IEEE Trans. Inf. Theory.

[16]  Zdenek Hradil,et al.  Objective approach to biased tomography schemes , 2007 .

[17]  Denis Vion,et al.  Single-shot qubit readout in circuit quantum electrodynamics , 2009, 1005.5615.

[18]  Microstrip superconducting quantum interference device radio-frequency amplifier: Scattering parameters and input coupling , 2008 .

[19]  L. Goddard Information Theory , 1962, Nature.

[20]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[21]  J. Noh,et al.  Measurement of the quantum phase by photon counting. , 1991, Physical review letters.

[22]  E Knill,et al.  Quantum state tomography of an itinerant squeezed microwave field. , 2010, Physical review letters.

[23]  J. Clarke,et al.  Dispersive magnetometry with a quantum limited SQUID parametric amplifier , 2010, 1003.2466.

[24]  G. Rempe,et al.  An elementary quantum network of single atoms in optical cavities , 2012, Nature.

[25]  M. Beck,et al.  Dipole coupling of a double quantum dot to a microwave resonator. , 2011, Physical review letters.

[26]  C. Caves,et al.  Quantum limits on bosonic communication rates , 1994 .

[27]  C. Gardiner,et al.  Generalised P-representations in quantum optics , 1980 .

[28]  Corey Marks Bell , 2010 .

[29]  E. Knill,et al.  Diluted maximum-likelihood algorithm for quantum tomography , 2006, quant-ph/0611244.

[30]  V. Man'ko,et al.  Measuring microwave quantum states: tomogram and moments , 2011, 1104.3857.

[31]  R. Filip,et al.  Noise-powered probabilistic concentration of phase information , 2010, 1005.3706.

[32]  J. Gambetta,et al.  Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. , 2012, Physical review letters.

[33]  Paul,et al.  Realistic optical homodyne measurements and quasiprobability distributions. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[34]  P Horodecki,et al.  Experimental extraction of secure correlations from a noisy private state. , 2010, Physical review letters.

[35]  Milburn,et al.  Interpretation for a positive P representation. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[36]  Erik Lucero,et al.  Deterministic entanglement of photons in two superconducting microwave resonators. , 2010, Physical review letters.

[37]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[38]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[39]  Z Hradil,et al.  Biased tomography schemes: an objective approach. , 2006, Physical review letters.

[40]  H. Haus,et al.  QUANTUM NOISE IN LINEAR AMPLIFIERS , 1962 .

[41]  J. Fink,et al.  Experimental state tomography of itinerant single microwave photons. , 2011, Physical review letters.

[42]  Mazyar Mirrahimi,et al.  Real-time quantum feedback prepares and stabilizes photon number states , 2011, Nature.

[43]  J. L. Kelly,et al.  B.S.T.J. briefs: On the simultaneous measurement of a pair of conjugate observables , 1965 .

[44]  W. Lange,et al.  PREFACE: Final issue of Journal of Optics B: Quantum and Semiclassical Optics , 2005 .

[45]  Agarwal,et al.  Scheme to measure the positive P distribution. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[46]  K. Audenaert,et al.  Quantum tomographic reconstruction with error bars: a Kalman filter approach , 2008, 0809.3359.

[47]  O. Astafiev,et al.  Resonance Fluorescence of a Single Artificial Atom , 2010, Science.

[48]  L Frunzio,et al.  Generating single microwave photons in a circuit. , 2007, Nature.

[49]  H. Carmichael Statistical Methods in Quantum Optics 2 , 2008 .

[50]  S. Filipp,et al.  Observation of two-mode squeezing in the microwave frequency domain. , 2011, Physical review letters.

[51]  R. J. Schoelkopf,et al.  Phase-preserving amplification near the quantum limit with a Josephson ring modulator , 2009, Nature.

[52]  A. Lvovsky,et al.  Continuous-variable optical quantum-state tomography , 2009 .

[53]  Paul,et al.  High-accuracy optical homodyne detection with low-efficiency detectors: "Preamplification" from antisqueezing. , 1994, Physical review letters.

[54]  C. Monroe,et al.  Observation of entanglement between a single trapped atom and a single photon , 2004, Nature.

[55]  Bernard Yurke,et al.  Squeezed-state generation using a Josephson parametric amplifier , 1987 .

[56]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[57]  Erik Lucero,et al.  Decoherence dynamics of complex photon states in a superconducting circuit. , 2009, Physical review letters.

[58]  A. I. Lvovsky,et al.  Iterative maximum-likelihood reconstruction in quantum homodyne tomography , 2003, quant-ph/0311097.

[59]  J. Raimond,et al.  Exploring the Quantum , 2006 .

[60]  A. Wunsche Displaced Fock states and their connection to quasiprobabilities , 1991 .

[61]  M. Scully,et al.  Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations , 2003 .

[62]  Quantum state reconstruction and detection of quantum coherences on different observation levels. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[63]  M. Ježek,et al.  Experimental demonstration of a Hadamard gate for coherent state qubits , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[64]  M. Mariantoni,et al.  Dual-path state reconstruction scheme for propagating quantum microwaves and detector noise tomography. , 2010, Physical review letters.

[65]  H. Carmichael Statistical Methods in Quantum Optics 2: Non-Classical Fields , 2007 .

[66]  A. SalehS. Quantum Optics : Journal of the European Optical Society Part B TUTORIAL Squeezed state of light , 2001 .

[67]  C. Helstrom Quantum detection and estimation theory , 1969 .

[68]  Kevin Cahill,et al.  DENSITY OPERATORS AND QUASIPROBABILITY DISTRIBUTIONS. , 1969 .

[69]  B. Yurke,et al.  Performance of Cavity-Parametric Amplifiers, Employing Kerr Nonlinearites, in the Presence of Two-Photon Loss , 2006, Journal of Lightwave Technology.

[70]  S. Filipp,et al.  Measurements of the Correlation Function of a Microwave Frequency Single Photon Source , 2010, 1002.3738.

[71]  D. Matsukevich,et al.  Entanglement of single-atom quantum bits at a distance , 2007, Nature.

[72]  S T Merkel,et al.  Microwave photon counter based on Josephson junctions. , 2010, Physical review letters.

[73]  M. Mariantoni,et al.  Planck spectroscopy and quantum noise of microwave beam splitters. , 2010, Physical review letters.

[74]  L. Frunzio,et al.  Two-mode correlation of microwave quantum noise generated by parametric down-conversion. , 2010, Physical review letters.

[75]  Vogel Nonclassical states: An observable criterion , 2000, Physical review letters.

[76]  S. Filipp,et al.  Driving Rydberg-Rydberg transitions from a coplanar microwave waveguide. , 2012, Physical review letters.

[77]  D. Schuster,et al.  Proposal for manipulating and detecting spin and orbital States of trapped electrons on helium using cavity quantum electrodynamics. , 2009, Physical review letters.

[78]  L. Bishop,et al.  Quantum-to-classical transition in cavity quantum electrodynamics. , 2010, Physical review letters.

[79]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[80]  S. Deleglise,et al.  Reconstruction of non-classical cavity field states with snapshots of their decoherence , 2008, Nature.

[81]  S. Girvin,et al.  Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.

[82]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[83]  R. Schnabel,et al.  Direct sampling of negative quasiprobabilities of a squeezed state. , 2011, Physical review letters.

[84]  R Patil Vijay,et al.  Observation of quantum jumps in a superconducting artificial atom. , 2010, Physical review letters.

[85]  Z. Hradil Quantum-state estimation , 1996, quant-ph/9609012.

[86]  L Frunzio,et al.  Approaching unit visibility for control of a superconducting qubit with dispersive readout. , 2005, Physical review letters.

[87]  Canada,et al.  Dynamics of dispersive single-qubit readout in circuit quantum electrodynamics , 2009, 0907.2549.

[88]  J Wrachtrup,et al.  Strong coupling of a spin ensemble to a superconducting resonator. , 2010, Physical review letters.

[89]  L. Jiang,et al.  Quantum entanglement between an optical photon and a solid-state spin qubit , 2010, Nature.

[90]  Canada,et al.  Schemes for the observation of photon correlation functions in circuit QED with linear detectors , 2010, 1004.3987.

[91]  R. Blatt,et al.  Tunable Ion-Photon Entanglement in an Optical Cavity , 2012, Nature.

[92]  Erik Lucero,et al.  Synthesizing arbitrary quantum states in a superconducting resonator , 2009, Nature.

[93]  Dreyer,et al.  Quantum Rabi oscillation: A direct test of field quantization in a cavity. , 1996, Physical review letters.

[94]  A. A. Abdumalikov,et al.  Observation of resonant photon blockade at microwave frequencies using correlation function measurements. , 2011, Physical review letters.