Six: Dealing with Missing or Incomplete Data: Debunking the Myth of Emptiness
暂无分享,去创建一个
[1] Jason W. Osborne,et al. Creating Valid Prediction Equations in Multiple Regression Shrinkage, Double Cross–Validation, and Confidence Intervals Around Predictions , 2008 .
[2] A. Acock. Working With Missing Values , 2005 .
[3] J. Schafer. Multiple imputation: a primer , 1999, Statistical methods in medical research.
[4] Y. Haitovsky. Missing Data in Regression Analysis , 1968 .
[5] D. Rubin,et al. Statistical Analysis with Missing Data , 1988 .
[6] J. Graham,et al. How Many Imputations are Really Needed? Some Practical Clarifications of Multiple Imputation Theory , 2007, Prevention Science.
[7] Elizabeth A Stuart,et al. Multiple imputation with large data sets: a case study of the Children's Mental Health Initiative. , 2009, American journal of epidemiology.
[8] Anthony S. Bryk,et al. Hierarchical Linear Models: Applications and Data Analysis Methods , 1992 .
[9] T. Charlton. The Olmecs: America's First Civilization , 2006 .
[10] D. Rubin. INFERENCE AND MISSING DATA , 1975 .
[11] J. Schafer,et al. Missing data: our view of the state of the art. , 2002, Psychological methods.
[12] Sven Rabung,et al. [How to deal with missing data?]. , 2010, Psychotherapie, Psychosomatik, medizinische Psychologie.
[13] Daniel J. Pratt,et al. Education Longitudinal Study of 2002: Base Year Data File User's Manual. NCES 2004-405. , 2004 .
[14] J. Osborne. Prediction in Multiple Regression , 2000 .
[15] Joseph L Schafer,et al. Analysis of Incomplete Multivariate Data , 1997 .
[16] Yang C. Yuan,et al. Multiple Imputation for Missing Data: Concepts and New Development , 2000 .