Colossal resistance switching and band gap modulation in a perovskite nickelate by electron doping

The electronic properties of correlated oxides are exceptionally sensitive to the orbital occupancy of electrons. Here we report an electron doping strategy via a chemical route, where interstitial dopants (for example, hydrogen) can be reversibly intercalated, realizing a sharp phase transition in a model correlated perovskite nickelate SmNiO3. The electron configuration of eg orbital of Ni(3+) t2g(6)eg(1) in SmNiO3 is modified by injecting and anchoring an extra electron, forming a strongly correlated Ni(2+) t2g(6)eg(2) structure leading to the emergence of a new insulating phase. A reversible resistivity modulation greater than eight orders of magnitude is demonstrated at room temperature. A solid-state room temperature non-volatile proton-gated phase-change transistor is demonstrated based on this principle, which may inform new materials design for correlated oxide devices. Electron doping-driven phase transition accompanied by large conductance changes and band gap modulation opens up new directions to explore emerging electronic and photonic devices with correlated oxide systems.

[1]  J. Alonso,et al.  Pressure-induced melting of charge-order in the self-doped Mott insulator YNiO 3 , 2004 .

[2]  Fujimori,et al.  Electronic structure of PrNiO3 studied by photoemission and x-ray-absorption spectroscopy: Band gap and orbital ordering. , 1995, Physical review. B, Condensed matter.

[3]  Manfred Martin,et al.  On the conduction pathway for protons in nanocrystalline yttria-stabilized zirconia. , 2009, Physical chemistry chemical physics : PCCP.

[4]  Suk Won Cha,et al.  Atomic layer deposition of thin-film ceramic electrolytes for high-performance fuel cells , 2013 .

[5]  Nazzal,et al.  Systematic study of insulator-metal transitions in perovskites RNiO3 (R=Pr,Nd,Sm,Eu) due to closing of charge-transfer gap. , 1992, Physical review. B, Condensed matter.

[6]  S. Ha,et al.  Stable metal–insulator transition in epitaxial SmNiO3 thin films , 2012 .

[7]  Frank Schoofs,et al.  High pressure synthesis of SmNiO3 thin films and implications for thermodynamics of the nickelates , 2013 .

[8]  Alonso,et al.  Influence of carrier injection on the metal-insulator transition in electron- and hole-doped R1-xAxNiO3 perovskites. , 1995, Physical review. B, Condensed matter.

[9]  P. A. Duine,et al.  Visualization of hydrogen migration in solids using switchable mirrors , 1998, Nature.

[10]  F. d’Acapito,et al.  Direct observation of charge order in an epitaxial NdNiO3 film. , 2002, Physical review letters.

[11]  J. Rodríguez-Carvajal,et al.  Neutron-diffraction study of RNiO3 (R=La,Pr,Nd,Sm): Electronically induced structural changes across the metal-insulator transition. , 1992, Physical review. B, Condensed matter.

[12]  Rossi,et al.  RNiO3 perovskites (R=Pr,Nd): Nickel valence and the metal-insulator transition investigated by x-ray-absorption spectroscopy. , 1992, Physical review. B, Condensed matter.

[13]  A. Schrott,et al.  Mott transition field effect transistor , 1998 .

[14]  Gustau Catalan,et al.  Progress in perovskite nickelate research , 2008 .

[15]  Jian Shi,et al.  A correlated nickelate synaptic transistor , 2013, Nature Communications.

[16]  Taher Daud,et al.  Solid‐state thin‐film memistor for electronic neural networks , 1990 .

[17]  M. T. Casais,et al.  Charge disproportionation in RNiO 3 perovskites , 2000 .

[18]  Janssen,et al.  Band gap in NiO: A cluster study. , 1988, Physical review. B, Condensed matter.

[19]  P. Edwards,et al.  The transition to the metallic state , 1982 .

[20]  M. Medarde,et al.  Structural, magnetic and electronic properties of perovskites (R = rare earth) , 1997 .

[21]  W. Grochala,et al.  Thermal Decomposition of the Non‐Interstitial Hydrides for the Storage and Production of Hydrogen , 2004 .

[22]  Albert Frederick Carley,et al.  The formation and characterisation of Ni3+ — an X-ray photoelectron spectroscopic investigation of potassium-doped Ni(110)–O , 1999 .

[23]  M. T. Casais,et al.  Charge Disproportionation in RNiO3 Perovskites: Simultaneous Metal-Insulator and Structural Transition in YNiO3 , 1999 .

[24]  J. Allen,et al.  Magnitude and origin of the band gap in NiO , 1984 .

[25]  Masashi Kawasaki,et al.  Tuning of the metal-insulator transition in electrolyte-gated NdNiO3 thin films , 2010 .

[26]  G. Kádár,et al.  Neutron diffraction study of Mn3Ga , 1970 .

[27]  Leon Balents,et al.  Optical conductivity of LaNiO3: Coherent transport and correlation driven mass enhancement , 2010 .

[28]  Shimpei Ono,et al.  Electric‐Field Control of the Metal‐Insulator Transition in Ultrathin NdNiO3 Films , 2010, Advanced materials.

[29]  D. Khomskii,et al.  Charge ordering as alternative to Jahn-Teller distortion , 2007 .

[30]  Shriram Ramanathan,et al.  Origins of bad-metal conductivity and the insulator–metal transition in the rare-earth nickelates , 2013, Nature Physics.

[31]  R. Mortimer,et al.  New Electrochromic Materials , 2002, Science progress.