Origin of the exotic electronic states in antiferromagnetic NdSb

[1]  X. Wan,et al.  Pressure engineering of intertwined phase transitions in lanthanide monopnictide NdSb , 2022, Science China Physics, Mechanics & Astronomy.

[2]  P. Canfield,et al.  Rare-earth monopnictides: Family of antiferromagnets hosting magnetic Fermi arcs , 2022, Physical Review B.

[3]  Y. Vohra,et al.  Drastic enhancement of magnetic critical temperature and amorphization in topological magnet EuSn2P2 under pressure , 2022, npj Quantum Materials.

[4]  B. Ueland,et al.  Unconventional surface state pairs in a high-symmetry lattice with anti-ferromagnetic band-folding , 2022, Communications Physics.

[5]  Anup Pradhan Sakhya,et al.  Complex electronic structure evolution of NdSb across the magnetic transition , 2022, Physical Review B.

[6]  P. Canfield,et al.  Emergence of Fermi arcs due to magnetic splitting in an antiferromagnet , 2022, Nature.

[7]  F. Steglich,et al.  Consecutive topological phase transitions and colossal magnetoresistance in a magnetic topological semimetal , 2022, npj Quantum Materials.

[8]  Wenshuai Gao,et al.  Magnetic properties of the layered magnetic topological insulator EuSn2As2 , 2021, Physical Review B.

[9]  Haijun Zhang,et al.  Magnetism-induced ideal Weyl state in bulk van der Waals crystal MnSb2Te4 , 2021 .

[10]  X. Liu,et al.  Topological response of the anomalous Hall effect in MnBi2Te4 due to magnetic canting , 2021, npj Quantum Materials.

[11]  Z. Fang,et al.  Topological classification and diagnosis in magnetically ordered electronic materials , 2021, Physical Review B.

[12]  D. Shen,et al.  Multiple Magnetic Topological Phases in Bulk van der Waals Crystal MnSb_{4}Te_{7}. , 2021, Physical review letters.

[13]  K. He MnBi2Te4-family intrinsic magnetic topological materials , 2020, npj Quantum Materials.

[14]  Robert-Jan Slager,et al.  Topological correspondence between magnetic space group representations and subdimensions , 2020, 2010.10536.

[15]  W. Ning,et al.  Recent advancements in the study of intrinsic magnetic topological insulators and magnetic Weyl semimetals , 2020, 2008.10770.

[16]  R. Arita,et al.  Devil's staircase transition of the electronic structures in CeSb , 2020, Nature Communications.

[17]  J. Denlinger,et al.  Distinct topological properties in Ce monopnictides having correlated f electrons: CeN vs. CeBi , 2020 .

[18]  Barry Bradlyn,et al.  Magnetic topological quantum chemistry , 2020, Nature Communications.

[19]  C. Felser,et al.  High-throughput calculations of magnetic topological materials , 2020, Nature.

[20]  Shengbai Zhang,et al.  Emergence of Nontrivial Low‐Energy Dirac Fermions in Antiferromagnetic EuCd2As2 , 2020, Advanced materials.

[21]  Clas Persson,et al.  Irvsp: To obtain irreducible representations of electronic states in the VASP , 2020, Comput. Phys. Commun..

[22]  Su-Yang Xu,et al.  Realization of an intrinsic ferromagnetic topological state in MnBi8Te13 , 2019, Science Advances.

[23]  Yi Liu,et al.  Large Fermi surface expansion through anisotropic mixing of conduction and f electrons in the semimetallic Kondo lattice CeBi , 2019, Physical Review B.

[24]  J. Zou,et al.  The study of magnetic topological semimetals by first principles calculations , 2019, npj Computational Materials.

[25]  Y. Yu,et al.  Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4 , 2019, Science.

[26]  Xi Dai,et al.  Higher-Order Topology of the Axion Insulator EuIn_{2}As_{2}. , 2019, Physical review letters.

[27]  Yang Liu,et al.  Probing the origin of extreme magnetoresistance in Pr/Sm mono-antimonides/bismuthides , 2019, Physical Review B.

[28]  Yoshinori Tokura,et al.  Magnetic topological insulators , 2019, Nature Reviews Physics.

[29]  Yang Liu,et al.  Tunable electronic structure and topological properties of LnPn (Ln=Ce, Pr, Sm, Gd, Yb; Pn=Sb, Bi) , 2018, Communications Physics.

[30]  Yang Liu,et al.  Tunable electronic structure and surface states in rare-earth monobismuthides with partially filled f shell , 2018, Physical Review B.

[31]  C. Felser,et al.  Observation of topological surface states and strong electron/hole imbalance in extreme magnetoresistance compound LaBi , 2018 .

[32]  Timur K. Kim,et al.  Experimental Determination of the Topological Phase Diagram in Cerium Monopnictides. , 2017, Physical review letters.

[33]  H. Kumigashira,et al.  Three-dimensional band structure of LaSb and CeSb: Absence of band inversion , 2017, 1707.05100.

[34]  Yongbin Lee,et al.  Electronic structure of RSb (R = Y, Ce, Gd, Dy, Ho, Tm, Lu) studied by angle-resolved photoemission spectroscopy , 2017, 1704.06237.

[35]  Matthias Troyer,et al.  WannierTools: An open-source software package for novel topological materials , 2017, Comput. Phys. Commun..

[36]  C. Kane,et al.  Topological Classification of Crystalline Insulators through Band Structure Combinatorics , 2016, 1612.02007.

[37]  Y. J. Zhang,et al.  Possible Weyl fermions in the magnetic Kondo system CeSb , 2016, 1611.02927.

[38]  G. Fecher,et al.  Multiple Dirac cones at the surface of the topological metal LaBi , 2016, Nature Communications.

[39]  J. Staunton,et al.  Lanthanide contraction and magnetism in the heavy rare earth elements , 2007, Nature.

[40]  L. Sandratskii,et al.  Multiple k magnetic structure and Fermi surface of USb , 2000 .

[41]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[42]  Furrer,et al.  Anisotropic exchange and spin dynamics in the type-I (-IA) antiferromagnets CeAs, CeSb, and USb: A neutron study. , 1986, Physical review. B, Condensed matter.

[43]  Norman,et al.  Supercell calculations of the valence photoemission spectra of CeSb, PrSb, and NdSb. , 1985, Physical review. B, Condensed matter.

[44]  Y. Wang,et al.  Magnetic and quadrupolar excitations in NdSb , 1985 .

[45]  P. Bak,et al.  Spin waves in triple-q--> structures. Application to USb , 1981 .

[46]  P. Fischer,et al.  Magnetic ordering of neodymium monopnictides determined by neutron diffraction , 1973 .