Monolithically integrated stretchable photonics

Mechanically stretchable photonics provides a new geometric degree of freedom for photonic system design and foresees applications ranging from artificial skins to soft wearable electronics. Here we describe the design and experimental realization of the first single-mode stretchable photonic devices. These devices, made of chalcogenide glass and epoxy polymer materials, are monolithically integrated on elastomer substrates. To impart mechanical stretching capability to devices built using these intrinsically brittle materials, our design strategy involves local substrate stiffening to minimize shape deformation of critical photonic components, and interconnecting optical waveguides assuming a meandering Euler spiral geometry to mitigate radiative optical loss. Devices fabricated following such design can sustain 41% nominal tensile strain and 3000 stretching cycles without measurable degradation in optical performance. In addition, we present a rigorous analytical model to quantitatively predict stress-optical coupling behavior in waveguide devices of arbitrary geometry without using a single fitting parameter.

[1]  Kathleen Richardson,et al.  Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor. , 2007, Optics express.

[2]  Jacob T. Robinson,et al.  Stretchable photonic crystal cavity with wide frequency tunability. , 2013, Nano letters.

[3]  Jan Vanfleteren,et al.  Thin-film stretchable electronics technology based on meandering interconnections: fabrication and mechanical performance , 2011 .

[4]  W. Withayachumnankul,et al.  Mechanically Tunable Dielectric Resonator Metasurfaces at Visible Frequencies. , 2016, ACS nano.

[5]  Jerome Michon,et al.  A new twist on glass: A brittle material enabling flexible integrated photonics , 2017 .

[6]  A. Yariv,et al.  Soft lithography replica molding of critically coupled polymer microring resonators , 2004, IEEE Photonics Technology Letters.

[7]  Timo Aalto,et al.  New silicon photonics integration platform enabled by novel micron-scale bends , 2013, 1301.2197.

[8]  Christopher S. Chen,et al.  High‐Conductivity Elastomeric Electronics , 2004 .

[9]  R. Sanjeevi,et al.  Effect of strain rate on the fracture behaviour of skin , 1994, Journal of Biosciences.

[10]  Andrei Faraon,et al.  Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces , 2015, Nature Communications.

[11]  Ping Zhang,et al.  Foldable and Cytocompatible Sol-gel TiO2 Photonics , 2015, Scientific Reports.

[12]  M. Hossain,et al.  Simultaneous measurement of thermo-optic and stress-optic coefficients of polymer thin films using prism coupler technique. , 2010, Applied optics.

[13]  Alain Fort,et al.  One-step waveguide and optical circuit writing in photopolymerizable materials processed by two-photon absorption , 2005 .

[14]  Jian Wang,et al.  Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing. , 2012, Optics express.

[15]  R. Dahiya,et al.  Smart contact lens using passive structures , 2014, IEEE SENSORS 2014 Proceedings.

[16]  Steven G. Johnson,et al.  Perturbation theory for Maxwell's equations with shifting material boundaries. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  M. Haney,et al.  A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects , 2013, Journal of Lightwave Technology.

[18]  Martin D. Verweij,et al.  Characterization of Integrated Optical Strain Sensors Based on Silicon Waveguides , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[19]  Jan Vanfleteren,et al.  Stretchable optical waveguides. , 2014, Optics express.

[20]  Dominique Bosc,et al.  Integrated polymer micro-ring resonators for optical sensing applications , 2015 .

[21]  Bert J. Offrein,et al.  Flexible, stable, and easily processable optical silicones for low loss polymer waveguides , 2013, Photonics West - Optoelectronic Materials and Devices.

[22]  Li Jin,et al.  Optical bistability in a high-Q racetrack resonator based on small SU-8 ridge waveguides. , 2013, Optics letters.

[23]  Timo Aalto,et al.  Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform. , 2013, Optics express.

[24]  Lin Jia,et al.  Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin , 2014, Nature Communications.

[25]  Kathleen Richardson,et al.  Comparison of the optical, thermal and structural properties of Ge–Sb–S thin films deposited using thermal evaporation and pulsed laser deposition techniques , 2011 .

[26]  R. Agarwal,et al.  Tunable Metasurface and Flat Optical Zoom Lens on a Stretchable Substrate. , 2016, Nano letters.

[27]  N. Carlie,et al.  A SOLUTION-BASED APPROACH TO THE FABRICATION OF NOVEL CHALCOGENIDE GLASS MATERIALS AND STRUCTURES , 2010 .

[28]  Zhigang Suo,et al.  Elastomeric substrates with embedded stiff platforms for stretchable electronics , 2013 .

[29]  Jianping Fu,et al.  Photolithographic surface micromachining of polydimethylsiloxane (PDMS). , 2012, Lab on a chip.

[30]  Kevin O'Brien,et al.  Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides , 2016, Science Robotics.

[31]  Hongtao Lin,et al.  Solution Processing and Resist‐Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic–Organic Hybrid Photonic Integration , 2014 .

[32]  Dae-Hyeong Kim,et al.  Flexible and stretchable electronics for biointegrated devices. , 2012, Annual review of biomedical engineering.

[33]  T. Shibata,et al.  Flexible opto-electronic circuit board for in-device interconnection , 2008, 2008 58th Electronic Components and Technology Conference.

[34]  N. G. Tarr,et al.  Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides , 2005, Journal of Lightwave Technology.

[35]  Li Zhu,et al.  Flexible photonic metastructures for tunable coloration , 2015 .

[36]  J. Rogers,et al.  Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. , 2011, Nature materials.

[37]  R.T. Chen,et al.  Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects , 2004, Journal of Lightwave Technology.

[38]  Weidong Zhou,et al.  Breakthroughs in Photonics 2012: Breakthroughs in Nanomembranes and Nanomembrane Lasers , 2013, IEEE Photonics Journal.

[39]  M. Huang Stress effects on the performance of optical waveguides , 2003 .

[40]  J. Vanfleteren,et al.  Design of Metal Interconnects for Stretchable Electronic Circuits using Finite Element Analysis , 2007 .

[41]  J. Vanfleteren,et al.  Highly Reliable Flexible Active Optical Links , 2010, IEEE Photonics Technology Letters.

[42]  Wei Zhang,et al.  Low-loss photonic device in Ge-Sb-S chalcogenide glass. , 2016, Optics letters.

[43]  Hongtao Lin,et al.  High‐Performance, High‐Index‐Contrast Chalcogenide Glass Photonics on Silicon and Unconventional Non‐planar Substrates , 2013 .

[44]  Ping Zhang,et al.  Flexible integrated photonics: where materials, mechanics and optics meet [Invited] , 2013 .

[45]  Mo Li,et al.  Flexible and tunable silicon photonic circuits on plastic substrates , 2012, Scientific Reports.

[46]  Hongtao Lin,et al.  Integrated flexible chalcogenide glass photonic devices , 2014, Nature Photonics.

[47]  Larry R. Dalton,et al.  Polymer micro-ring filters and modulators , 2002 .

[48]  N. Umeda,et al.  Measurement System for Very Small Photoelastic Constant of Polymer Films , 2006 .

[49]  Sohee Kim,et al.  A Method to Pattern Silver Nanowires Directly on Wafer-Scale PDMS Substrate and Its Applications. , 2016, ACS applied materials & interfaces.

[50]  W. Steier,et al.  Polymer microresonator strain sensors , 2005, IEEE Photonics Technology Letters.

[51]  G. Beheim,et al.  Integrated optical ring resonator with micromechanical diaphragms for pressure sensing , 1994, IEEE Photonics Technology Letters.

[52]  Roger Dangel,et al.  Development of Versatile Polymer Waveguide Flex Technology for Use in Optical Interconnects , 2013, Journal of Lightwave Technology.