Magnetite Chemistry in the Porphyry Copper Systems of Kerman Cenozoic Magmatic Arc, Kerman, Iran

[1]  M. Sadeghi,et al.  A new hypothesis on parameters controlling the formation and size of porphyry copper deposits: Implications on thermal gradient of subducted oceanic slab, depth of dehydration and partial melting along the Kerman copper belt in Iran , 2019, Ore Geology Reviews.

[2]  M. Rezaei,et al.  Metal endowment reflected in chemical composition of silicates and sulfides of mineralized porphyry copper systems, Urumieh-Dokhtar magmatic arc, Iran , 2018 .

[3]  Dengfeng Li,et al.  Magnetite geochemistry of the Heijianshan Fe–Cu (–Au) deposit in Eastern Tianshan: Metallogenic implications for submarine volcanic-hosted Fe–Cu deposits in NW China , 2016, Ore Geology Reviews.

[4]  H. Lowers,et al.  Hydrothermal reequilibration of igneous magnetite in altered granitic plutons and its implications for magnetite classification schemes: Insights from the Handan-Xingtai iron district, North China Craton , 2017 .

[5]  S. Alirezaei,et al.  Zircon U–Pb and molybdenite Re–Os geochronology, with S isotopic composition of sulfides from the Chah-Firouzeh porphyry Cu deposit, Kerman Cenozoic arc, SE Iran , 2017 .

[6]  T. Lacourse,et al.  Magnetite as an Indicator Mineral in the Exploration of Porphyry Deposits: A Case Study in Till near the Mount Polley Cu-Au Deposit, British Columbia, Canada , 2017 .

[7]  J. Richards Economic geology: Clues to hidden copper deposits , 2016 .

[8]  B. Williamson,et al.  Porphyry copper enrichment linked to excess aluminium in plagioclase , 2016 .

[9]  S. Alirezaei,et al.  THE GEOLOGY, PETROGENESIS AND GEOLOGICAL SETTING OF THE VOLCANIC AND PLUTONIC ROCKS FROM DARALOO AND SARMESHK PORPHYRY COPPER DEPOSITS, SOUTH KERMAN COPPER BELT, IRAN , 2016 .

[10]  T. Lacourse,et al.  Trace elements in magnetite from porphyry Cu–Mo–Au deposits in British Columbia, Canada , 2016 .

[11]  J. Richards Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision , 2015 .

[12]  M. Sadeghi,et al.  Rare earth element signatures of economic and sub-economic porphyry copper systems in Urumieh–Dokhtar Magmatic Arc (UDMA), Iran , 2015 .

[13]  Limin Zhou,et al.  Temporal–spatial distribution and tectonic setting of porphyry copper deposits in Iran: Constraints from zircon U–Pb and molybdenite Re–Os geochronology , 2015 .

[14]  Yue‐xing Feng,et al.  Geochemical differences between subduction- and collision-related copper-bearing porphyries and implications for metallogenesis , 2015 .

[15]  J. Gemmell,et al.  The chlorite proximitor: A new tool for detecting porphyry ore deposits , 2015 .

[16]  Wei-dong Sun,et al.  Porphyry deposits and oxidized magmas , 2015 .

[17]  D. Lentz,et al.  REEQUILIBRATION PROCESSES IN MAGNETITE FROM IRON SKARN DEPOSITS , 2015 .

[18]  P. Nadoll,et al.  Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States , 2015, Mineralium Deposita.

[19]  J. Richards,et al.  Increasing Magmatic Oxidation State from Paleocene to Miocene in the Eastern Gangdese Belt, Tibet: Implication for Collision-Related Porphyry Cu-Mo +/- Au Mineralization , 2014 .

[20]  F. Moore,et al.  Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran: A review , 2014 .

[21]  Zhaolin Wang,et al.  Geology and origin of the post-collisional Narigongma porphyry Cu-Mo deposit, southern Qinghai, Tibet , 2014 .

[22]  D. French,et al.  The chemistry of hydrothermal magnetite: A review , 2014 .

[23]  J. Richards,et al.  Increased Magmatic Water Content—The Key to Oligo-Miocene Porphyry Cu-Mo ± Au Formation in the Eastern Gangdese Belt, Tibet , 2014 .

[24]  G. Beaudoin,et al.  Trace elements in magnetite as petrogenetic indicators , 2014, Mineralium Deposita.

[25]  S. Alirezaei,et al.  Chemistry of magmatic and alteration minerals in the Chahfiruzeh porphyry copper deposit, south Iran: implications for the evolution of the magmas and physicochemical conditions of the ore fluids , 2014 .

[26]  Yue-heng Yang,et al.  Magmatic process recorded in plagioclase at the Baogutu reduced porphyry Cu deposit, western Junggar, NW-China , 2014 .

[27]  N. Evans,et al.  Baogutu: An example of reduced porphyry Cu deposit in western Junggar , 2014 .

[28]  J. Wilkinson Triggers for the formation of porphyry ore deposits in magmatic arcs , 2013 .

[29]  J. Richards Giant ore deposits formed by optimal alignments and combinations of geological processes , 2013 .

[30]  W. Fan,et al.  The link between reduced porphyry copper deposits and oxidized magmas , 2013 .

[31]  S. Rowins,et al.  Reduced granitic magmas in an arc setting: The Catface porphyry Cu–Mo deposit of the Paleogene Cascade Arc , 2012 .

[32]  P. Nadoll,et al.  Geochemistry of Magnetite from Hydrothermal Ore Deposits and Host Rocks of the Mesoproterozoic Belt Supergroup, United States , 2012 .

[33]  G. Beaudoin,et al.  Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: Implications for provenance discrimination , 2012 .

[34]  B. Mysen High-pressure and high-temperature titanium solution mechanisms in silicate-saturated aqueous fluids and hydrous silicate melts , 2012 .

[35]  J. Richards,et al.  High Sr/Y Magmas Reflect Arc Maturity, High Magmatic Water Content, and Porphyry Cu ± Mo ± Au Potential: Examples from the Tethyan Arcs of Central and Eastern Iran and Western Pakistan , 2012 .

[36]  A. Hezarkhani,et al.  Hydrothermal evolution of Darrehzar porphyry copper deposit, Iran: evidence from fluid inclusions , 2012, Arabian Journal of Geosciences.

[37]  P. Nadoll,et al.  LA-ICP-MS of magnetite: methods and reference materials , 2011 .

[38]  F. Balsamo,et al.  Long‐lived orogenic construction along the paleo‐Pacific margin of Gondwana (Deep Freeze Range, North Victoria Land, Antarctica) , 2011 .

[39]  B. Wernicke,et al.  A Paleogene extensional arc flare‐up in Iran , 2011 .

[40]  G. Beaudoin,et al.  Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types , 2011 .

[41]  Z. Hou,et al.  Porphyry Cu (–Mo–Au) deposits related to melting of thickened mafic lower crust: Examples from the eastern Tethyan metallogenic domain , 2011 .

[42]  R. Sillitoe Porphyry Copper Systems , 2010 .

[43]  Zhiming Yang,et al.  The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen , 2009 .

[44]  M. Allen Discussion on the Eocene bimodal Piranshahr massif of the Sanadaj–Sirjan Zone, West Iran: a marker of the end of collision in the Zagros orogen , 2009, Journal of the Geological Society.

[45]  Wei-dong Sun,et al.  PORPHYRY COPPER-GOLD MINERALIZATION AT YULONG, CHINA, PROMOTED BY DECREASING REDOX POTENTIAL DURING MAGNETITE ALTERATION , 2009 .

[46]  A. Hezarkhani Hydrothermal fluid geochemistry at the Chah-Firuzeh porphyry copper deposit, Iran: Evidence from fluid inclusions , 2009 .

[47]  M. Haschke,et al.  High magmatic flux during Alpine-Himalayan collision: Constraints from the Kal-e-Kafi complex, central Iran , 2009 .

[48]  G. Mostafa,et al.  TERTIARY-QUATERNARY MAGMATISM IN DEHAJ AREA , 2009 .

[49]  J. Shahabpour,et al.  Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran , 2009 .

[50]  C. R. S. Filho,et al.  Mineral chemistry of ore and hydrothermal alteration at the Sossego iron oxide-copper-gold deposit, Carajas Mineral Province, Brazil , 2008 .

[51]  A. Simon,et al.  The effect of crystal-melt partitioning on the budgets of Cu, Au, and Ag , 2008 .

[52]  A. Aftabi,et al.  Geology and Re‐Os Geochronology of Mineralization of the Miduk Porphyry Copper Deposit, Iran , 2008 .

[53]  J. Shahabpour,et al.  TRANSITION FROM PALEOGENE NORMAL CALC-ALKALINE TO NEOGENE ADAKITIC-LIKE PLUTONISM ANDCU-METALLOGENY IN THE KERMAN PORPHYRY COPPER BELT: RESPONSE TO NEOGENE CRUSTAL THICKENING , 2008 .

[54]  Linsen Xie,et al.  Pointwise Simultaneous Approximation by Combinations of Baskakov Operators , 2007 .

[55]  A. Zarasvandi,et al.  40Ar/39Ar Geochronology of Alteration and Petrogenesis of Porphyry Copper-Related Granitoids in the Darreh-Zerreshk and Ali-Abad area, Central Iran , 2007 .

[56]  A. Hezarkhani Mineralogy and fluid inclusion investigations in the Reagan Porphyry System, Iran, the path to an uneconomic porphyry copper deposit , 2006 .

[57]  N. Pearson,et al.  Trace element geochemistry of magnetite and pyrite in Fe oxide (+/- Cu-Au) mineralised systems: Insights into the geochemistry of ore-forming fluids , 2006 .

[58]  P. Glatzel,et al.  The oxidation state of vanadium in titanomagnetite from layered basic intrusions , 2006 .

[59]  C. J. Talbot,et al.  A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran) , 2006 .

[60]  A. Zarasvandi,et al.  Geology of the Darreh-Zerreshk and Ali-Abad Porphyry Copper Deposits, Central Iran , 2005 .

[61]  G. Dipple,et al.  World Skarn Deposits , 2005 .

[62]  W. Griffin,et al.  Thermal history analysis of selected Chilean, Indonesian and Iranian porphyry Cu-Mo-Au deposits , 2005 .

[63]  Xiaoming Qu,et al.  Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet , 2004 .

[64]  T. Pettke,et al.  Magmatic anhydrite and calcite in the ore-forming quartz-monzodiorite magma at Santa Rita, New Mexico (USA): genetic constraints on porphyry-Cu mineralization , 2004 .

[65]  A. Hezarkhani PHYSICO-CHEMICAL CONDITIONS FOR AN UNECONOMIC PORPHYRY SYSTEM, RAIGAN-BAM , 2004 .

[66]  J. Richards Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation , 2003 .

[67]  J. Mungall Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits , 2002 .

[68]  P. Roeder,et al.  The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks , 2001 .

[69]  A. Boyce,et al.  Geologic evolution of the Escondida area, northern Chile: A model for spatial and temporal localization of porphyry Cu mineralization , 2001 .

[70]  D. Groves,et al.  The geodynamics of world-class gold deposits: characteristics, space-time distribution, and origins , 2000 .

[71]  S. Rowins Reduced porphyry copper-gold deposits: A new variation on an old theme , 2000 .

[72]  A. Hezarkhani,et al.  Controls of alteration and mineralization in the Sungun porphyry copper deposit, Iran; evidence from fluid inclusions and stable isotopes , 1998 .

[73]  J. Lowenstern,et al.  The role of magmas in the formation of hydrothermal ore deposits , 1994, Nature.

[74]  H. Keppler,et al.  Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O−HCl and haplogranite-H2O−HF , 1991 .

[75]  J. Grigsby Detrital Magnetite as a Provenance Indicator , 1990 .

[76]  W. Ryan,et al.  Plate Tectonics and the Evolution of the Alpine System , 1973 .