A Partial k-Arboretum of Graphs with Bounded Treewidth

[1]  Paul D. Seymour,et al.  Graph Minors: XVII. Taming a Vortex , 1999, J. Comb. Theory, Ser. B.

[2]  Konstantin Yu. Gorbunov,et al.  An Estimate of the Tree-Width of a Planar Graph Which Has Not a Given Planar Grid as a Minor , 1998, WG.

[3]  Mikkel Thorup,et al.  All Structured Programs have Small Tree-Width and Good Register Allocation , 1998, Inf. Comput..

[4]  Joost Engelfriet,et al.  Domino Treewidth , 1997, J. Algorithms.

[5]  Mikkel Thorup,et al.  Structured Programs have Small Tree-Width and Good Register Allocation (Extended Abstract) , 1997, WG.

[6]  Paul D. Seymour,et al.  Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.

[7]  Haim Kaplan,et al.  Pathwidth, Bandwidth, and Completion Problems to Proper Interval Graphs with Small Cliques , 1996, SIAM J. Comput..

[8]  Rolf H. Möhring,et al.  Triangulating Graphs Without Asteroidal Triples , 1996, Discret. Appl. Math..

[9]  Paul D. Seymour,et al.  Graph Minors .XII. Distance on a Surface , 1995, J. Comb. Theory, Ser. B.

[10]  Jan van Leeuwen,et al.  On Interval Routing Schemes and Treewidth , 1995, Inf. Comput..

[11]  John R. Gilbert,et al.  Approximating Treewidth, Pathwidth, Frontsize, and Shortest Elimination Tree , 1995, J. Algorithms.

[12]  Siddharthan Ramachandramurthi,et al.  Algorithms for VLSI layout based on graph width metrics , 1994 .

[13]  Robin Thomas,et al.  Quickly Excluding a Planar Graph , 1994, J. Comb. Theory, Ser. B.

[14]  Michael R. Fellows,et al.  A Simple Linear-Time Algorithm for Finding Path-Decompositions of Small Width , 1994, Inf. Process. Lett..

[15]  Jens Lagergren,et al.  The Nonexistence of Reduction Rules Giving an Embedding into a K-tree , 1994, Discret. Appl. Math..

[16]  Michael A. Langston,et al.  obstruction Set Isolation for the Gate Matrix Layout Problem , 1994, Discret. Appl. Math..

[17]  Ivan Hal Sudborough,et al.  The Vertex Separation and Search Number of a Graph , 1994, Inf. Comput..

[18]  Dimitrios M. Thilikos,et al.  Fugitive-Search Games on Graphs and Related Parameters , 1994, Theor. Comput. Sci..

[19]  Atsushi Takahashi,et al.  Minimal acyclic forbidden minors for the family of graphs with bounded path-width , 1994, Discret. Math..

[20]  Jan van Leeuwen,et al.  Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity , 1994 .

[21]  Robin Thomas,et al.  Graph Searching and a Min-Max Theorem for Tree-Width , 1993, J. Comb. Theory, Ser. B.

[22]  Andrea S. LaPaugh,et al.  Recontamination does not help to search a graph , 1993, JACM.

[23]  Hans L. Bodlaender,et al.  Complexity of Path-Forming Games , 1993, Theor. Comput. Sci..

[24]  Nancy G. Kinnersley,et al.  The Vertex Separation Number of a Graph equals its Path-Width , 1992, Inf. Process. Lett..

[25]  Atsushi Takahashi,et al.  Mixed Searching and Proper-Path-Width , 1991, Theor. Comput. Sci..

[26]  Bruno Courcelle,et al.  Monadic Second-Order Evaluations on Tree-Decomposable Graphs , 1991, Theor. Comput. Sci..

[27]  John R. Gilbert,et al.  Approximating Treewidth, Pathwidth, and Minimum Elimination Tree Height , 1991, WG.

[28]  Hans L. Bodlaender,et al.  On Disjoint Cycles , 1991, Int. J. Found. Comput. Sci..

[29]  Robin Thomas,et al.  Quickly excluding a forest , 1991, J. Comb. Theory, Ser. B.

[30]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[31]  Bruno Courcelle,et al.  Graph Rewriting: An Algebraic and Logic Approach , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[32]  Jan van Leeuwen,et al.  Graph Algorithms , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[33]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[34]  Rolf H. Möhring,et al.  The Pathwidth and Treewidth of Cographs , 1990, SIAM J. Discret. Math..

[35]  Paul D. Seymour,et al.  Graph minors. IX. Disjoint crossed paths , 1990, J. Comb. Theory, Ser. B.

[36]  Paul D. Seymour,et al.  Graph minors. VIII. A kuratowski theorem for general surfaces , 1990, J. Comb. Theory, Ser. B.

[37]  Paul D. Seymour,et al.  Graph minors. IV. Tree-width and well-quasi-ordering , 1990, J. Comb. Theory, Ser. B.

[38]  Bruno Courcelle,et al.  An algebraic theory of graph reduction , 1990, JACM.

[39]  Hans-Jörg Kreowski,et al.  A Note on Hyperedge Replacement , 1990, Graph-Grammars and Their Application to Computer Science.

[40]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[41]  Stefan Arnborg,et al.  Forbidden minors characterization of partial 3-trees , 1990, Discret. Math..

[42]  Joseph W. H. Liu The role of elimination trees in sparse factorization , 1990 .

[43]  Walter Vogler,et al.  On Hyperedge Replacement and BNLC Graph Grammars , 1989, Discret. Appl. Math..

[44]  Michael R. Fellows,et al.  On search decision and the efficiency of polynomial-time algorithms , 1989, STOC '89.

[45]  Paul D. Seymour,et al.  Graph minors. VII. Disjoint paths on a surface , 1988, J. Comb. Theory, Ser. B.

[46]  Clemens Lautemann,et al.  Decomposition Trees: Structured Graph Representation and Efficient Algorithms , 1988, CAAP.

[47]  Clyde L. Monma,et al.  On the Complexity of Covering Vertices by Faces in a Planar Graph , 1988, SIAM J. Comput..

[48]  Michael R. Fellows,et al.  Nonconstructive Advances in Polynomial-Time Complexity , 1987, Inf. Process. Lett..

[49]  Eugene L. Lawler,et al.  Linear-Time Computation of Optimal Subgraphs of Decomposable Graphs , 1987, J. Algorithms.

[50]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[51]  Annegret Habel,et al.  May we introduce to you: hyperedge replacement , 1986, Graph-Grammars and Their Application to Computer Science.

[52]  Christos H. Papadimitriou,et al.  Searching and Pebbling , 1986, Theor. Comput. Sci..

[53]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[54]  Paul D. Seymour,et al.  Graph minors. VI. Disjoint paths across a disc , 1986, J. Comb. Theory, Ser. B.

[55]  Paul D. Seymour,et al.  Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.

[56]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[57]  S. Arnborg,et al.  Characterization and recognition of partial 3-trees , 1986 .

[58]  Detlef Seese,et al.  Tree-partite graphs and the complexity of algorithms , 1985, FCT.

[59]  Christos H. Papadimitriou,et al.  Interval graphs and seatching , 1985, Discret. Math..

[60]  Stefan Arnborg,et al.  Efficient algorithms for combinatorial problems on graphs with bounded decomposability — A survey , 1985, BIT.

[61]  Fan Chung,et al.  ON THE CUTWIDTH AND THE TOPOLOGICAL BANDWIDTH OF A TREE , 1985 .

[62]  J. A. Bondy,et al.  Progress in Graph Theory , 1984 .

[63]  John R Gilbert,et al.  A Separator Theorem for Graphs of Bounded Genus , 1984, J. Algorithms.

[64]  Paul D. Seymour,et al.  Graph minors. III. Planar tree-width , 1984, J. Comb. Theory B.

[65]  Brenda S. Baker,et al.  Approximation algorithms for NP-complete problems on planar graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[66]  Paul D. Seymour,et al.  Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.

[67]  Fillia Makedon,et al.  Topological Bandwidth , 1983, CAAP.

[68]  D. Rose,et al.  A Separator Theorem for Chordal Graphs , 1982 .

[69]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[70]  Leslie G. Valiant,et al.  On Time Versus Space , 1977, JACM.

[71]  F. Gavril The intersection graphs of subtrees in tree are exactly the chordal graphs , 1974 .

[72]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[73]  Jan van Leeuwen,et al.  Compact Routing Methods: A Survey , 1994, SIROCCO.

[74]  Paul D. Seymour,et al.  Graph Minors. XI. Circuits on a Surface , 1994, J. Comb. Theory, Ser. B.

[75]  T. Kloks Treewidth: Computations and Approximations , 1994 .

[76]  Hans L. Bodlaender,et al.  On Linear Time Minor Tests with Depth-First Search , 1993, J. Algorithms.

[77]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[78]  Mohamed Hédi Mosbah,et al.  Constructions d'algorithmes pour les graphes structurés par des méthodes algébriques et logiques , 1992 .

[79]  Annegret Habel,et al.  Hyperedge Replacement: Grammars and Languages , 1992, Lecture Notes in Computer Science.

[80]  Paul D. Seymour,et al.  Excluding a graph with one crossing , 1991, Graph Structure Theory.

[81]  Robin Thomas,et al.  A survey of linkless embeddings , 1991, Graph Structure Theory.

[82]  Rolf H. Möhring,et al.  Graph Problems Related to Gate Matrix Layout and PLA Folding , 1990 .

[83]  Daniel Bienstock,et al.  Graph Searching, Path-Width, Tree-Width and Related Problems (A Survey) , 1989, Reliability Of Computer And Communication Networks.

[84]  H. Bodlaender Planar graphs with bounded treewidth , 1988 .

[85]  Hans L. Bodlaender,et al.  Some Classes of Graphs with Bounded Treewidth , 1988, Bull. EATCS.

[86]  Stephen T. Hedetniemi,et al.  Linear algorithms on k-terminal graphs , 1987 .

[87]  H. Bodlaender Classes of graphs with bounded tree-width , 1986 .

[88]  P. Seymour,et al.  Surveys in combinatorics 1985: Graph minors – a survey , 1985 .

[89]  Manfred Nagl,et al.  Graph-Grammars and Their Application to Computer Science , 1982, Lecture Notes in Computer Science.

[90]  Maciej M. Syslo,et al.  Characterizations of outerplanar graphs , 1979, Discret. Math..

[91]  B. Bollobás Surveys in Combinatorics , 1979 .

[92]  Donald J. ROSE,et al.  On simple characterizations of k-trees , 1974, Discret. Math..