Strong Normalization of Herbelin's Explicit Substitution Calculus with Substitution Propagation
暂无分享,去创建一个
[1] Joe B. Wells,et al. Cut rules and explicit substitutions , 2001, Mathematical Structures in Computer Science.
[2] Hugo Herbelin. Explicit Substitutions and Reducibility , 2001, J. Log. Comput..
[3] Luís Pinto,et al. Cut-Elimination and a Permutation-Free Sequent Calculus for Intuitionistic Logic , 1998, Stud Logica.
[4] Roy Dyckho. Strong normalisation of Herbelin ' s explicit substitution calculus with substitution propagation , 2001 .
[5] Frank Pfenning,et al. A Linear Spine Calculus , 2003, J. Log. Comput..
[6] Herman Geuvers,et al. Explicit substitution : on the edge of strong normalisation , 1996 .
[7] José Espírito Santo,et al. Revisiting the Correspondence between Cut Elimination and Normalisation , 2000, ICALP.
[8] R. Dyckho,et al. Proof search in constructive logics , 1998 .
[9] C. J. Bloo,et al. Preservation of strong normalisation in named lambda calculi with explicit substitution and garbage collection , 1995 .
[10] Tobias Nipkow,et al. Term rewriting and all that , 1998 .
[11] Paula Severi,et al. On normalisation , 1995 .
[12] Tobias Nipkow,et al. Higher-Order Rewrite Systems and Their Confluence , 1998, Theor. Comput. Sci..
[13] Jose Carlos Soares do Esprito Santo. Conservative extensions of the lambda-calculus for the computational interpretation of sequent calculus , 2002 .
[14] Ralph Matthes,et al. Short proofs of normalization for the simply- typed λ-calculus, permutative conversions and Gödel's T , 2003, Arch. Math. Log..
[15] Pierre Lescanne,et al. From λσ to λν: a journey through calculi of explicit substitutions , 1994, POPL '94.
[16] Kristoffer H. Rose,et al. Explicit Substitution - Tutorial & Survey , 1996 .
[17] Andrew M. Pitts,et al. A New Approach to Abstract Syntax with Variable Binding , 2002, Formal Aspects of Computing.
[18] James Brotherston,et al. A Formalised First-Order Con uence Proof for the λ-Calculus Using One-Sorted Variable Names (Barendregt Was Right after all ... almost) , 2001 .
[19] Paula Severi,et al. Perpetual Reductions in Lambda-Calculus , 1999, Inf. Comput..