Computer-aided diagnosis of knee-joint disorders via vibroarthrographic signal analysis: a review.
暂无分享,去创建一个
The knee is the lower-extremity joint that supports nearly the entire weight of the human body. It is susceptible to osteoarthritis and other knee-joint disorders caused by degeneration or loss of articular cartilage. The detection of a knee-joint abnormality at an early stage is important, because it helps increase therapeutic options that may slow down the degenerative process. Imaging-based arthrographic modalities can provide anatomical images of the joint cartilage surfaces, but fail to demonstrate the functional integrity of the cartilage. Knee-joint auscultation, by means of recording the vibroarthrographic (VAG) signal during bending motion of a knee, could be used to develop a noninvasive diagnostic tool. Computer-aided analysis of VAG signals could provide quantitative indices for screening of degenerative conditions of the cartilage surface and staging of osteoarthritis. In addition, the diagnosis of knee-joint pathology by means of VAG signal analysis may reduce the number of semi-invasive diagnostic arthroscopic examinations. This article reviews studies related to VAG signal analysis, first summarizing the pilot studies that demonstrated the diagnostic potential of knee-joint auscultation for the detection of degenerative diseases, and then describing the details of recent progress in analysis of VAG signals using temporal analysis, frequency-domain analysis, time-frequency analysis, and statistical modeling. The decision-making methods used in the related studies are summarized, followed by a comparison of the diagnostic performance achieved by different pattern classifiers. The final section is a perspective on the future and further development of VAG signal analysis.