Magnetic and magnetodielectric properties of Y3−xLaxFe5O12 ceramics

Y3−xLaxFe5O12 (x = 0–0.5) ceramics with garnet structure are prepared by the solid state reaction method and their structural, magnetic, and magnetodielectric properties are investigated systematically. La3+ substitution leads to lattice expansion and possible ion transposition, which oppositely affect the variation of Fe2+ concentration. As a result, both the saturation magnetization and the intrinsic magnetodielectric effect first increase and then decrease with the increase of La concentration. More interestingly, room temperature large magnetodielectric coefficient of about −5% is obtained at 106 Hz and 0.9 T for Y2.7La0.3Fe5O12 ceramics. This study provides a feasible alternative method for modulating the saturation magnetization and the magnetodielectric effect of Y3Fe5O12-based materials.

[1]  R. Eason,et al.  Selective growth of yttrium iron garnet and yttrium ferrite by combinatorial pulsed-laser ablation of common precursors , 2014, Journal of Materials Science.

[2]  Xiaomei Lu,et al.  Peculiar magnetism of BiFeO3 nanoparticles with size approaching the period of the spiral spin structure , 2013, Scientific Reports.

[3]  A. Maignan,et al.  Magnetic and magnetodielectric properties of erbium iron garnet ceramic , 2013 .

[4]  Y. J. Wu,et al.  Magnetic and magnetodielectric properties of Bi-substituted yttrium iron garnet ceramics , 2012 .

[5]  A. Salker,et al.  Enhancement in the magnetic moment with Cr3+ doping and its effect on the magneto-structural properties of Ce(0.1)Y(2.9)Fe5O12. , 2012, Physical chemistry chemical physics : PCCP.

[6]  X. Chen,et al.  Effects of Al Substitution on Dielectric Response and Magnetic Behavior of Yttrium Iron Garnet Ceramics , 2012 .

[7]  Junping Li,et al.  Magnetodielectric effects of Y3Fe5−xTixO12+x/2 ceramics , 2012 .

[8]  X. Qi,et al.  Dielectric relaxation and magnetic behavior of bismuth-substituted yttrium iron garnet , 2011 .

[9]  N. Hur,et al.  Magnetodielectric effect via a noncollinear-to-collinear spin reorientation in rare-earth iron garnets , 2011 .

[10]  Xiaomei Lu,et al.  The effect of sintering temperature on magnetic and dielectric properties of Ho3Fe5O12 ceramics , 2011 .

[11]  Y. Tokura,et al.  Excess-electron induced polarization and magnetoelectric effect in yttrium iron garnet , 2010 .

[12]  Xiaomei Lu,et al.  Study on dielectric and magnetodielectric properties of Lu3Fe5O12 ceramics , 2009 .

[13]  Y. Tokura,et al.  Quantum magnetoelectric effect in iron garnet , 2009 .

[14]  Hua Yang,et al.  Effect of lanthanum ions on magnetic properties of Y3Fe5O12 nanoparticles , 2009 .

[15]  Y. J. Wu,et al.  Dielectric relaxations of yttrium iron garnet ceramics over a broad temperature range , 2007 .

[16]  G. Catalán Magnetocapacitance without magnetoelectric coupling , 2006 .

[17]  G. Catalán Magnetodielectric effect without multiferroic coupling , 2005, cond-mat/0510313.

[18]  Youichi Murakami,et al.  Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4 , 2005, Nature.

[19]  Y. Yao,et al.  The influence of Fe concentration on Y3Al5-xFexO12 garnets , 2005 .

[20]  Sang-Wook Cheong,et al.  Low-field magnetodielectric effect in terbium iron garnets , 2005 .

[21]  Ji Zhou,et al.  Effect of Bi-substitution on the dielectric properties of polycrystalline yttrium iron garnet , 2004 .

[22]  A. Vekris,et al.  Synthesis, magnetic properties, surface modification and cytotoxicity evaluation of Y3Fe5−xAlxO12 (0⩽x⩽2) garnet submicron particles for biomedical applications , 2001 .

[23]  S. Musić,et al.  Ferritization of Y3+ and Nd3+ ions in the solid state , 2000 .

[24]  B. Guilhot,et al.  Preparation of polycrystalline yttrium iron garnet ceramics , 1997 .

[25]  Wagner,et al.  Evidence for magnetic interactions between distant cations in yittrium iron garnet. , 1995, Physical review letters.

[26]  A. Hofmeister,et al.  Infrared spectroscopy of yttrium aluminum, yttrium gallium, and yttrium iron garnets , 1992 .

[27]  Lu,et al.  Noncubic symmetry in garnet structures studied using extended x-ray-absorption fine-structure spectra. , 1991, Physical review. B, Condensed matter.

[28]  E. Beregi,et al.  Cation distribution and IR spectra of rare-earth gallium iron garnets , 1989 .

[29]  P. Lanchester,et al.  Electrostriction and the magnetoelectric effect in YIG , 1980 .

[30]  P. Larsen,et al.  Electrical properties of yttrium iron garnet at high temperatures , 1976 .

[31]  R. Wadsack,et al.  Raman-active phonons in aluminum, gallium, and iron garnets* , 1973 .

[32]  P. Larsen,et al.  Electric and Dielectric Properties of Polycrystalline Yttrium Iron Garnet: Space-Charge-Limited Currents in an Inhomogeneous Solid , 1973 .

[33]  J. P. Remeika,et al.  Magnetic Study of the Heavier Rare-Earth Iron Garnets , 1965 .

[34]  E. Frei,et al.  Curie Temperature of Some Garnets by the Differential Thermal Analysis Technique , 1961 .

[35]  S. Geller,et al.  Magnetic and Crystallographic Properties of Substituted Yttrium-Iron Garnet, 3 Y 2 O 3 · x M 2 O 3 · ( 5 − x ) Fe 2 O 3 , 1958 .

[36]  S. Geller,et al.  Structure and ferrimagnetism of yttrium and rare‐earth–iron garnets , 1957 .

[37]  S. Srinath,et al.  Effect of Gd3+ on dielectric and magnetic properties of Y3Fe5O12 , 2014 .