Scattering from concentration fluctuations in polymer blends: A monte carlo investigation

AbstractThe collective scattering function Scoll( $$\vec q$$ ), which describes light (neutron-, x-ray) scattering under wavevector $$\vec q$$ , is obtained from Monte Carlo simulations for a symmetrical polymer mixture. The polymers are modelled by self-avoiding walks ofNA=NB=N steps on a simple cubic lattice, where a fractionφV of sites is left vacant, and an attractive energyε occurs if two neighboring sites are taken by the same kind of monomer. Spinodal curves are estimated from linear extrapolation of Scoll−1(0) vs.ε/kBT, whereT is the temperature. Also the single chain structure factor is obtained and the de Gennes random phase approximation (RPA) can thus be tested. Unexpectedly, strong deviations are found if one species is very dilute. The estimation of an effective Flory-Hugginsχ-parameter from scattering data is also discussed.

[1]  Kurt Binder,et al.  Theory of first-order phase transitions , 1987 .

[2]  Heermann,et al.  Monte Carlo test of the Flory-Huggins theory for polymer mixtures. , 1987, Physical review. B, Condensed matter.

[3]  C. Han,et al.  Study of miscibility and critical phenomena of deuterated polystyrene and hydrogenated poly(vinyl methyl ether) by small-angle neutron scattering , 1985 .

[4]  K. Binder Computer simulation of macromolecular materials , 1988 .

[5]  M. Brereton,et al.  Neutron scattering from a series of compatible polymer blends: Significance of the Flory χF parameter , 1987 .

[6]  Kurt Kremer,et al.  Monte Carlo simulation of lattice models for macromolecules , 1988 .

[7]  K. Binder,et al.  Critical phenomena in polymer mixtures: Monte Carlo simulation of a lattice model , 1987 .

[8]  C. Han,et al.  Neutron cloud poinds and concentration fluctuations of polymer blends , 1984 .

[9]  K. Binder Nucleation barriers, spinodals, and the Ginzburg criterion , 1984 .

[10]  K. Binder Collective diffusion, nucleation, and spinodal decomposition in polymer mixtures , 1983 .

[11]  K. Binder Dynamics of phase separation and critical phenomena in polymer mixtures , 1987 .

[12]  J. Schelten,et al.  Critical fluctuations in a binary polymer mixture , 1983 .

[13]  K. Binder,et al.  Critical properties of the Flory–Huggins lattice model of polymer mixtures , 1987 .

[14]  Kurt Binder,et al.  Phase separation of polymer mixtures in the presence of solvent , 1988 .

[15]  F. Bates,et al.  Thermodynamics of isotopic polymer mixtures: poly(vinylethylene) and poly(ethylethylene) , 1988 .

[16]  K. Binder,et al.  Fluctuations and lack of self-averaging in the kinetics of domain growth , 1986 .

[17]  P. Meakin,et al.  Dynamical aspects of phase separation in polymer blends , 1983 .

[18]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[19]  P. Flory Principles of polymer chemistry , 1953 .

[20]  F. Bates,et al.  Thermodynamics of isotopic polymer mixtures: Significance of local structural symmetry , 1988 .

[21]  Mortensen,et al.  Mean-field and Ising critical behavior of a polymer blend. , 1987, Physical review letters.

[22]  Jean Zinn-Justin,et al.  Critical exponents from field theory , 1980 .

[23]  M. Huggins Solutions of Long Chain Compounds , 1941 .

[24]  Michael E. Fisher,et al.  The renormalization group in the theory of critical behavior , 1974 .

[25]  K. Binder,et al.  Monte Carlo simulation of a lattice model for ternary polymer mixtures , 1988 .

[26]  K. Binder Finite size effects on phase transitions , 1987 .

[27]  C. Han,et al.  Experimental study of thermal fluctuation in spinodal decomposition of a binary polymer mixture , 1986 .

[28]  K. Binder,et al.  Interaction effects on linear dimensions of polymer chains in polymer mixtures , 1988 .