Classification of Veronesean caps
暂无分享,去创建一个
In this paper all Veronesean caps of projective spaces of finite dimension over skewfields are classified. More precisely, if PG(M,K), K a skewfield, contains a Veronesean cap X, then K is a field and X is either a Veronese variety or a projection of a Veronese variety. This result extends analogous theorems of Mazzocca and Melone [Caps and Veronese varieties in projective Galois spaces. Discrete Math. 48 (1984) 243-252] and Thas and Van Maldeghem [Classification of finite Veronesean caps, European J. Combin. 25(2) (2004) 275-285] for finite projective spaces.
[1] Hendrik Van Maldeghem,et al. Classification of finite Veronesean caps , 2004, Eur. J. Comb..
[2] Francesco Mazzocca,et al. Caps and Veronese varieties in projective Galois spaces , 1984, Discret. Math..
[3] G. Marino,et al. Lax Projective Embeddings of Polar Spaces , 2004 .
[4] Beniamino Segre,et al. Lectures on modern geometry , 1962 .
[5] J. Thas,et al. General Galois geometries , 1992 .