Texture-Based Leaf Identification

A novel approach to visual leaf identification is proposed. A leaf is represented by a pair of local feature histograms, one computed from the leaf interior, the other from the border. The histogrammed local features are an improved version of a recently proposed rotation and scale invariant descriptor based on local binary patterns (LBPs).

[1]  Matti Pietikäinen,et al.  Performance evaluation of texture measures with classification based on Kullback discrimination of distributions , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[2]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[3]  John Platt,et al.  Probabilistic Outputs for Support vector Machines and Comparisons to Regularized Likelihood Methods , 1999 .

[4]  Matti Pietikäinen,et al.  Rotation-invariant texture classification using feature distributions , 2000, Pattern Recognit..

[5]  Oskar Söderkvist,et al.  Computer Vision Classification of Leaves from Swedish Trees , 2001 .

[6]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Matti Pietikäinen,et al.  Multi-scale Binary Patterns for Texture Analysis , 2003, SCIA.

[8]  Sean White,et al.  First steps toward an electronic field guide for plants , 2006 .

[9]  W. S. Lee,et al.  Identification of citrus disease using color texture features and discriminant analysis , 2006 .

[10]  Hsuan-Tien Lin,et al.  A note on Platt’s probabilistic outputs for support vector machines , 2007, Machine Learning.

[11]  Yuxuan Wang,et al.  A Leaf Recognition Algorithm for Plant Classification Using Probabilistic Neural Network , 2007, 2007 IEEE International Symposium on Signal Processing and Information Technology.

[12]  Sean White,et al.  Searching the World's Herbaria: A System for Visual Identification of Plant Species , 2008, ECCV.

[13]  Matti Pietikäinen,et al.  Rotation Invariant Image Description with Local Binary Pattern Histogram Fourier Features , 2009, SCIA.

[14]  Zhenhua Guo,et al.  A Completed Modeling of Local Binary Pattern Operator for Texture Classification , 2010, IEEE Transactions on Image Processing.

[15]  R. Sablatnig,et al.  Automated identification of tree species from images of the bark , leaves and needles , 2010 .

[16]  Andrea Vedaldi,et al.  Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.

[17]  James M. Rehg,et al.  CENTRIST: A Visual Descriptor for Scene Categorization , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Paulus Insap Santosa,et al.  A Comparative Experiment of Several Shape Methods in Recognizing Plants , 2011, ArXiv.

[19]  Seon-Jong Kim,et al.  Tree recognition for landscape using by combination of features of its leaf, flower and bark , 2011, SICE Annual Conference 2011.

[20]  Paulus Insap Santosa,et al.  Performance Improvement of Leaf Identification SystemUsing Principal Component Analysis , 2012 .

[21]  W. John Kress,et al.  Leafsnap: A Computer Vision System for Automatic Plant Species Identification , 2012, ECCV.

[22]  Kwang-seok Hong,et al.  Advanced Leaf Recognition based on Leaf Contour and Centroid for Plant Classification , 2012 .

[23]  Paulus Insap Santosa,et al.  EXPERIMENTS OF ZERNIKE MOMENTS FOR LEAF IDENTIFICATION , 2012 .

[24]  Andrew Zisserman,et al.  Efficient Additive Kernels via Explicit Feature Maps , 2012, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Matti Pietikäinen,et al.  Rotation-Invariant Image and Video Description With Local Binary Pattern Features , 2012, IEEE Transactions on Image Processing.

[26]  T. Suk,et al.  Leaf recognition of woody species in Central Europe , 2013 .

[27]  Shai Shalev-Shwartz,et al.  Stochastic dual coordinate ascent methods for regularized loss , 2012, J. Mach. Learn. Res..

[28]  Hyderabad,et al.  An Efficient Representation of Shape for Object Recognition and Classification using Circular Shift Method , 2013 .

[29]  Kwang-seok Hong,et al.  An Implementation of Leaf Recognition System Based on Leaf Contour and Centroid for Plant Classification , 2013 .

[30]  Paulus Insap Santosa,et al.  Neural Network Application on Foliage Plant Identification , 2011, ArXiv.

[31]  Jiri Matas,et al.  Kernel-mapped histograms of multi-scale LBPs for tree bark recognition , 2013, 2013 28th International Conference on Image and Vision Computing New Zealand (IVCNZ 2013).

[32]  Rong Xiao,et al.  Pairwise Rotation Invariant Co-Occurrence Local Binary Pattern , 2014, IEEE Trans. Pattern Anal. Mach. Intell..