Heights of projective varieties and positive Green forms

Using arithmetic intersection theory, a theory of heights for projective varieties over rings of algebraic integers is developed. These heights are generalizations of those considered by Weil, Schmidt, Nesterenko, Philippon, and Faltings. Several of their properties are proved, including lower bounds and an arithmetic Bezout theorem for the height of the intersection of two projective varieties. New estimates for the size of (generalized) resultants are derived. Among the analytic tools used in the paper are "Green forms" for analytic subvarieties, and the existence of poSitive Green forms is discussed. (J.-B.Bost and C. Soule) INSTITUT DES HAUTES ETUDES ScIENTIFIQUES,35,RoUTE DE CHARTRES, 91440, BURES-SUR-YvETTES, FRANCE (H. Gillet) DEPARTMENT OF MATHEMATICS, STATISTICS, AND COMPUTER SCIENCE, (M/c249), UNIVERSITY OF ILLINOIS AT CHICAGO, 851 S. MORGAN STREET, CHICAGO, ILLINOIS 60607 E-mail address: henriGmath. uic . edu License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

[1]  F. Knudsen,et al.  Projectivity of the moduli space of stable curves , 1976 .

[2]  C. Soulé,et al.  Arithmetic intersection theory , 1990 .

[3]  H. Levine A Theorem on Holomorphic Mappings into Complex Projective Space , 1960 .

[4]  A. Weil Arithmetic on Algebraic Varieties , 1951 .

[5]  Michel Laurent,et al.  Hauteur de matrices d'interpolation , 1992 .

[6]  Patrice Philippon,et al.  Critères Pour L’indépendance Algébrique , 1986 .

[7]  Gerd Faltings,et al.  Diophantine approximation on abelian varieties , 1991 .

[8]  W. Schmidt On Heights of Algebraic Subspaces and Diophantine Approximations , 1967 .

[9]  B. L. Waerden,et al.  Zur algebraischen Geometrie. IX , 1937 .

[10]  G. Wüstholz Über das Abelsche Analogon des Lindemannschen Satzes I , 1983 .

[11]  C. Soulé,et al.  On the number of lattice points in convex symmetric bodies and their duals , 1991 .

[12]  Shou-wu Zhang Positive line bundles on arithmetic surfaces , 1992 .

[13]  Yu. V. Nesterenko,et al.  ESTIMATES FOR THE CHARACTERISTIC FUNCTION OF A PRIME IDEAL , 1985 .

[14]  B. Harris,et al.  Archimedean height pairing of intersecting cycles , 1993 .

[15]  W. Fulton Rational equivalence on singular varieties , 1975 .

[16]  W. Stoll About the value distribution of holomorphic maps into the projective space , 1969 .

[17]  Enrico Bombieri,et al.  On Siegel's lemma , 1983 .

[18]  Gerd Faltings,et al.  Calculus on arithmetic surfaces , 1984 .

[19]  J. King The currents defined by analytic varieties , 1971 .

[20]  B. L. Waerden,et al.  Zur algebraischen Geometrie. IX , 1937 .

[21]  A. Blanchard Sur les variétés analytiques complexes , 1956 .

[22]  Patrice Philippon,et al.  Sur des hauteurs alternatives. I , 1991 .

[23]  Wolfgang Vogel,et al.  Lectures on Results on Bezout’s Theorem , 1984 .

[24]  Applications of arithmetic algebraic geometry to diophantine approximations , 1993 .

[25]  C. Soulé,et al.  Lectures on Arakelov Geometry , 1992 .

[26]  J. Bismut,et al.  The asymptotics of the Ray-Singer analytic torsion associated with high powers of a positive line bundle , 1989 .

[27]  D. Northcott An inequality in the theory of arithmetic on algebraic varieties , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.

[28]  G. Faltings,et al.  Lectures on the Arithmetic Riemann-Roch Theorem. , 1992 .

[29]  J. Vaaler,et al.  Inequalities for Heights Of Algebraic Subspaces And the Thue-Siegel Principle , 1990 .

[30]  C. Soulé,et al.  Intersection theory using Adams operations , 1987 .

[31]  W. Stoll Aspects of value distribution theory in several complex variables , 1977 .

[32]  S. Chern,et al.  Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections , 1965 .

[33]  Pierre Samuel,et al.  Méthodes d'algèbre abstraite en géométrie algèbrique , 1956 .

[34]  C. Soulé,et al.  Characteristic classes for algebraic vector bundles with hermitian metric. I , 1990 .

[35]  C. Soulé,et al.  An arithmetic Riemann-Roch theorem , 1992 .

[36]  U. Stuhler Eine Bemerkung zur Reduktionstheorie quadratischer Formen , 1976 .

[37]  D. Mumford,et al.  Geometric Invariant Theory , 2011 .

[38]  Jean-Benoît Bost,et al.  UN ANALOGUE ARITHMETIQUE DU THEOREME DE BEZOUT , 1991 .

[39]  William Fulton,et al.  Introduction to Intersection Theory in Algebraic Geometry , 1984 .

[40]  S. Lang Introduction to Arakelov Theory , 1988 .

[41]  W. Stoll The continuity of the fiber integral , 1966 .

[42]  Joins of schemes, linear projections , 1975 .

[43]  S. Helgason Groups and geometric analysis , 1984 .

[44]  B. V. Shabat Distribution of Values of Holomorphic Mappings , 1985 .

[45]  R. Remmert,et al.  Über kompakte homogene Kählersche Mannigfaltigkeiten , 1962 .

[46]  Daniel R. Grayson Reduction theory using semistability , 1984 .

[47]  Enrico Bombieri,et al.  Products of polynomials in many variables , 1990 .

[48]  D. Mumford,et al.  The projectivity of the moduli space of stable curves. I: Preliminaries on "det" and "Div". , 1976 .

[49]  G. Faltings Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127) , 1992 .

[50]  P. Griffiths,et al.  Analytic cycles and vector bundles on non-compact algebraic varieties , 1975 .