Improved maximum-norm a posteriori error estimates for linear and semilinear parabolic equations

Linear and semilinear second-order parabolic equations are considered. For these equations, we give a posteriori error estimates in the maximum norm that improve upon recent results in the literature. In particular it is shown that logarithmic dependence on the time step size can be eliminated. Semidiscrete and fully discrete versions of the backward Euler and of the Crank-Nicolson methods are considered. For their full discretizations, we use elliptic reconstructions that are, respectively, piecewise-constant and piecewise-linear in time. Certain bounds for the Green’s function of the parabolic operator are also employed.

[1]  Natalia Kopteva,et al.  Maximum Norm a Posteriori Error Estimation For a Time-dependent Reaction-diffusion Problem , 2012, Comput. Methods Appl. Math..

[2]  Natalia Kopteva,et al.  Maximum Norm A Posteriori Error Estimation for Parabolic Problems Using Elliptic Reconstructions , 2013, SIAM J. Numer. Anal..

[3]  T. Linss,et al.  Maximum-norm error analysis of a non-monotone FEM for a singularly perturbed reaction-diffusion problem , 2007 .

[4]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems IV: nonlinear problems , 1995 .

[5]  Natalia Kopteva,et al.  Maximum-norm a posteriori error estimates for singularly perturbed elliptic reaction-diffusion problems , 2015, Numerische Mathematik.

[6]  Mats Boman,et al.  Global and Localised A Posteriori Error Analysis in the maximum norm for finite element approximations of a convection-diffusion problem , 2000 .

[7]  Alan Demlow,et al.  Sharply local pointwise a posteriori error estimates for parabolic problems , 2010, Math. Comput..

[8]  Torsten Linss A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems , 2014 .

[9]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[10]  E. Davies,et al.  Non‐Gaussian Aspects of Heat Kernel Behaviour , 1997 .

[11]  Ricardo H. Nochetto,et al.  Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..

[12]  D. Griffel Applied functional analysis , 1982 .

[13]  Ricardo H. Nochetto,et al.  Pointwise a posteriori error estimates for monotone semi-linear equations , 2006, Numerische Mathematik.

[14]  Alan Demlow,et al.  A Posteriori Error Estimates in the Maximum Norm for Parabolic Problems , 2007, SIAM J. Numer. Anal..

[15]  Natalia Kopteva,et al.  Numerical Study of Maximum Norm a Posteriori Error Estimates for Singularly Perturbed Parabolic Problems , 2012, NAA.

[16]  Natalia Kopteva,et al.  Maximum-Norm A Posteriori Error Estimates for Singularly Perturbed Reaction-Diffusion Problems on Anisotropic Meshes , 2015, SIAM J. Numer. Anal..

[17]  O. A. Ladyzhenskai︠a︡,et al.  Linear and Quasi-linear Equations of Parabolic Type , 1995 .