暂无分享,去创建一个
Karthekeyan Chandrasekaran | Bernhard Haeupler | Navin Goyal | Bernhard Haeupler | Navin Goyal | Karthekeyan Chandrasekaran
[1] Uriel Feige,et al. On allocations that maximize fairness , 2008, SODA '08.
[2] Michael Luby,et al. A simple parallel algorithm for the maximal independent set problem , 1985, STOC '85.
[3] Christian Scheideler,et al. A new algorithm approach to the general Lovász local lemma with applications to scheduling and satisfiability problems (extended abstract) , 2000, STOC '00.
[4] Moni Naor,et al. Small-bias probability spaces: efficient constructions and applications , 1990, STOC '90.
[5] József Beck,et al. An Algorithmic Approach to the Lovász Local Lemma. I , 1991, Random Struct. Algorithms.
[6] Aravind Srinivasan. Improved algorithmic versions of the Lovász Local Lemma , 2008, SODA '08.
[7] Noga Alon,et al. A Fast and Simple Randomized Parallel Algorithm for the Maximal Independent Set Problem , 1985, J. Algorithms.
[8] Donald E. Knuth,et al. The Art of Computer Programming, Volume I: Fundamental Algorithms, 2nd Edition , 1997 .
[9] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[10] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[11] Noam Nisan,et al. Efficient approximation of product distributions , 1998, Random Struct. Algorithms.
[12] Bruce M. Maggs,et al. Packet routing and job-shop scheduling inO(congestion+dilation) steps , 1994, Comb..
[13] Artur Czumaj,et al. Coloring nonuniform hypergraphs: a new algorithmic approach to the general Lovász local lemma , 2000 .
[14] Linyuan Lu,et al. Using Lovász Local Lemma in the Space of Random Injections , 2007, Electron. J. Comb..
[15] Noga Alon,et al. A Parallel Algorithmic Version of the Local Lemma , 1991, Random Struct. Algorithms.
[16] Bruce A. Reed,et al. Further algorithmic aspects of the local lemma , 1998, STOC '98.
[17] Gábor Tardos,et al. A constructive proof of the general lovász local lemma , 2009, JACM.
[18] Donald E. Knuth,et al. The art of computer programming: V.1.: Fundamental algorithms , 1997 .
[19] P. Erdos-L Lovász. Problems and Results on 3-chromatic Hypergraphs and Some Related Questions , 2022 .
[20] Paul Erdös,et al. Lopsided Lovász Local Lemma and Latin transversals , 1991, Discret. Appl. Math..
[21] B. Reed. Graph Colouring and the Probabilistic Method , 2001 .
[22] Aravind Srinivasan,et al. Improved Algorithms via Approximations of Probability Distributions , 2000, J. Comput. Syst. Sci..
[23] Aravind Srinivasan,et al. New Constructive Aspects of the Lovasz Local Lemma , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.
[24] Robin A. Moser. Derandomizing the Lovasz Local Lemma more effectively , 2008, ArXiv.
[25] Joel H. Spencer,et al. Ramsey's Theorem - A New Lower Bound , 1975, J. Comb. Theory, Ser. A.
[26] Robin A. Moser. A constructive proof of the Lovász local lemma , 2008, STOC '09.