BLUE/UV-A RECEPTORS: HISTORICAL OVERVIEW

[1]  T. Mockler,et al.  Blue Light–Dependent in Vivo and in Vitro Phosphorylation of Arabidopsis Cryptochrome 1 Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.013011. , 2003, The Plant Cell Online.

[2]  C. Ballaré Stress Under the Sun: Spotlight on Ultraviolet-B Responses , 2003, Plant Physiology.

[3]  S. Kay,et al.  Molecular basis of seasonal time measurement in Arabidopsis , 2002, Nature.

[4]  K. Sakamoto,et al.  Cellular and Subcellular Localization of Phototropin 1 Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.003293. , 2002, The Plant Cell Online.

[5]  Margaret Ahmad,et al.  Action Spectrum for Cryptochrome-Dependent Hypocotyl Growth Inhibition in Arabidopsis1 , 2002, Plant Physiology.

[6]  J. Christie,et al.  Phototropins 1 and 2: versatile plant blue-light receptors. , 2002, Trends in plant science.

[7]  Chentao Lin Blue Light Receptors and Signal Transduction Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.000646. , 2002, The Plant Cell Online.

[8]  Ken-ichiro Shimazaki,et al.  phot1 and phot2 mediate blue light regulation of stomatal opening , 2001, Nature.

[9]  A. Cashmore,et al.  The Signaling Mechanism of Arabidopsis CRY1 Involves Direct Interaction with COP1 Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.010367. , 2001, The Plant Cell Online.

[10]  J. Christie,et al.  Phototropins: a new family of flavin-binding blue light receptors in plants. , 2001, Antioxidants & redox signaling.

[11]  K. Folta,et al.  Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition. , 2001, The Plant journal : for cell and molecular biology.

[12]  Masahiro Kasahara,et al.  Arabidopsis nph1 and npl1: Blue light receptors that mediate both phototropism and chloroplast relocation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[13]  J. Ecker,et al.  Phototropin-related NPL1 controls chloroplast relocation induced by blue light , 2001, Nature.

[14]  J. Christie,et al.  Blue Light Sensing in Higher Plants* , 2001, The Journal of Biological Chemistry.

[15]  S. Ishiguro,et al.  Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. , 2001, Science.

[16]  K. Moffat,et al.  Structure of a flavin-binding plant photoreceptor domain: Insights into light-mediated signal transduction , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Yan Liu,et al.  The C Termini of Arabidopsis Cryptochromes Mediate a Constitutive Light Response , 2000, Cell.

[18]  R. Kaldenhoff,et al.  Light-induced stomatal movement of selected Arabidopsis thaliana mutants. , 2000, Journal of experimental botany.

[19]  Chentao Lin,et al.  Plant blue-light receptors. , 2000, Trends in plant science.

[20]  R. Bogomolni,et al.  Reversal of blue light-stimulated stomatal opening by green light. , 2000, Plant & cell physiology.

[21]  J. Casal,et al.  Phytochromes, Cryptochromes, Phototropin: Photoreceptor Interactions in Plants , 2000, Photochemistry and photobiology.

[22]  T. Kanegae,et al.  Cryptochrome Nucleocytoplasmic Distribution and Gene Expression Are Regulated by Light Quality in the Fern Adiantum capillus-veneris , 2000, Plant Cell.

[23]  E. Volkenburgh Leaf expansion – an integrating plant behaviour , 1999 .

[24]  J. Christie,et al.  LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotide. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[25]  E. Liscum,et al.  Arabidopsis contains at least four independent blue-light-activated signal transduction pathways. , 1999, Plant physiology.

[26]  I. Zhulin,et al.  PAS Domains: Internal Sensors of Oxygen, Redox Potential, and Light , 1999, Microbiology and Molecular Biology Reviews.

[27]  P Reymond,et al.  Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropism. , 1998, Science.

[28]  O. Smirnova,et al.  Cryptochrome blue-light photoreceptors of Arabidopsis implicated in phototropism , 1998, Nature.

[29]  E. Zeiger,et al.  Role of zeaxanthin in blue light photoreception and the modulation of light-CO2 interactions in guard cells , 1998 .

[30]  P. Oeller,et al.  Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. , 1997, Science.

[31]  G. Jenkins,et al.  UV and blue light signal transduction in Arabidopsis. , 1997, Plant, cell & environment.

[32]  A. Cashmore,et al.  The cryptochrome family of photoreceptors , 1997 .

[33]  L. Klimczak,et al.  An enzyme similar to animal type II photolyases mediates photoreactivation in Arabidopsis. , 1997, The Plant cell.

[34]  J. Hays,et al.  PHH1, a novel gene from Arabidopsis thaliana that encodes a protein similar to plant blue-light photoreceptors and microbial photolyases , 1996, Molecular and General Genetics MGG.

[35]  K. Warpeha,et al.  Evidence That Zeaxanthin Is Not the Photoreceptor for Phototropism in Maize Coleoptiles , 1996, Plant physiology.

[36]  M. Quiñones,et al.  Close correspondence between the action spectra for the blue light responses of the guard cell and coleoptile chloroplasts, and the spectra for blue light-dependent stomatal opening and coleoptile phototropism. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[37]  M. Ahmad,et al.  Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation. , 1995, The Plant journal : for cell and molecular biology.

[38]  M. Ahmad,et al.  Expression of an Arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue, UV-A, and green light. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[39]  M. Ahmad,et al.  Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1 , 1995, Science.

[40]  A. Sancar,et al.  Putative blue-light photoreceptors from Arabidopsis thaliana and Sinapis alba with a high degree of sequence homology to DNA photolyase contain the two photolyase cofactors but lack DNA repair activity. , 1995, Biochemistry.

[41]  E. Liscum,et al.  Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. , 1995, The Plant cell.

[42]  A. Sancar Structure and function of DNA photolyase. , 1994, Biochemistry.

[43]  A. Cashmore,et al.  HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor , 1993, Nature.

[44]  A. Batschauer A plant gene for photolyase: an enzyme catalyzing the repair of UV-light-induced DNA damage. , 1993, The Plant journal : for cell and molecular biology.

[45]  L. Kaufman Transduction of Blue-Light Signals , 1993, Plant physiology.

[46]  P. Reymond,et al.  Light-induced phosphorylation of a membrane protein plays an early role in signal transduction for phototropism in Arabidopsis thaliana. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[47]  E. Volkenburgh,et al.  Light-stimulated cell expansion in bean (Phaseolus vulgaris L.) leaves , 1990, Planta.

[48]  E. Volkenburgh,et al.  Light-stimulated cell expansion in bean (Phaseolus vulgaris L.) leaves. II. Quantity and quality of light required. , 1990 .

[49]  K. L. Poff,et al.  Dependence of the phototropic response of Arabidopsis thaliana on fluence rate and wavelength. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[50]  P. Galland,et al.  THE ROLE OF PTERINS IN THE PHOTORECEPTION AND METABOLISM OF PLANTS , 1988 .

[51]  L. Pratt,et al.  Light-mediated changes in two proteins found associated with plasma membrane fractions from pea stem sections. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[52]  T. Baskin,et al.  AN ACTION SPECTRUM IN THE BLUE and ULTRAVIOLET FOR PHOTOTROPISM IN ALFALFA * , 1987 .

[53]  P. Karlsson Blue light regulation of stomata in wheat seedlings. II. Action spectrum and search for action dichroism , 1986 .

[54]  K. L. Poff,et al.  ANALYSIS OF MULTIPLE PHOTORECEPTOR PIGMENTS FOR PHOTOTROPISM IN A MUTANT OF Arabidopsis thaliana , 1984, Photochemistry and photobiology.

[55]  M. Iino,et al.  Blue-light-absorbing photoreceptors in plants , 1983 .

[56]  C. Larsson,et al.  SPECTRAL CHARACTERIZATION OF LIGHT‐REDUCIBLE CYTOCHROME IN A PLASMA MEMBRANE‐ENRICHED FRACTION AND IN OTHER MEMBRANES FROM CAULIFLOWER INFLORESCENCES , 1983 .

[57]  C. Field,et al.  Photocontrol of the Functional Coupling between Photosynthesis and Stomatal Conductance in the Intact Leaf : Blue Light and Par-Dependent Photosystems in Guard Cells. , 1982, Plant physiology.

[58]  T. Ogawa Blue light response of stomata with starch-containing (Vicia faba) and starch-deficient (Allium cepa) guard cells under background illumination with red light , 1981 .

[59]  D. Cosgrove Rapid Suppression of Growth by Blue Light: OCCURRENCE, TIME COURSE, AND GENERAL CHARACTERISTICS. , 1981, Plant physiology.

[60]  J. Gressel,et al.  BLUE LIGHT PHOTORECEPTION , 1979 .

[61]  V. Gaba,et al.  Two separate photoreceptors control hypocotyl growth in green seedlings , 1979, Nature.

[62]  M. Delbrück,et al.  Photoreceptors for biosynthesis, energy storage and vision , 1978 .

[63]  E. Zeiger,et al.  Light and Stomatal Function: Blue Light Stimulates Swelling of Guard Cell Protoplasts , 1977, Science.

[64]  J. A. Freeberg,et al.  Blue light-induced Absorbance Changes in Membrane Fractions from Corn and Neurospora. , 1977, Plant physiology.

[65]  W. L. Butler,et al.  FLAVIN‐MEDIATED PHOTOREACTIONS IN ARTIFICIAL SYSTEMS: A POSSIBLE MODEL FOR THE BLUE‐LIGHT PHOTORECEPTOR PIGMENT IN LIVING SYSTEMS * , 1976, Photochemistry and photobiology.

[66]  W. L. Butler,et al.  Photoreceptor Pigment for Blue Light in Neurospora crassa. , 1975, Plant physiology.

[67]  K. L. Poff,et al.  Absorbance changes induced by blue light in Phycomyces blakesleeanus and Dictyostelium discoideum , 1974, Nature.

[68]  W. Loomis,et al.  Light-induced absorbance changes associated with phototaxis in Dictyostelium. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[69]  D. Berns,et al.  Studies on the photopigment system in Phycomyces. , 1970, Biochemical and biophysical research communications.

[70]  K. Thimann,et al.  Second positive phototropism in the Avena coleoptile. , 1968, Plant physiology.

[71]  W. Briggs,et al.  Some Properties of Phytochrome Isolated From Dark-grown Oat Seedlings (Avena sativa L.). , 1968, Plant physiology.

[72]  G. Meijer RAPID GROWTH INHIBITION OF GHERKIN HYPOCOTYLS IN BLUE LIGHT1 , 1968 .

[73]  W. Briggs,et al.  The effects of light on a circadian rhythm of conidiation in neurospora. , 1967, Plant physiology.

[74]  P. Kuiper,et al.  Dependence upon Wavelength of Stomatal Movement in Epidermal Tissue of Senecio odoris. , 1964, Plant physiology.

[75]  Butler Wl,et al.  DENATURATION OF PHYTOCHROME. , 1964 .

[76]  M. Gibbs,et al.  STUDIES ON PHOTOSYNTHETIC PROCESSES. III. FURTHER STUDIES ON ACTION SPECTRA AND QUANTUM REQUIREMENTS FOR TRIPHOSPHOPYRIDINE NUCLEOTIDE REDUCTION AND THE FORMATION OF ADENOSINE TRIPHOSPHATE BY SPINACH CHLOROPLASTS. , 1963, The Journal of biological chemistry.

[77]  W. L. Butler,et al.  Nonphotochemical Transformations of Phytochrome in Vivo. , 1963, Plant physiology.

[78]  W. Briggs The Phototropic Responses of Higher Plants , 1963 .

[79]  A. Wheeler,et al.  The Physiology of Leaf Growth , 1963 .

[80]  W. Briggs Mediation of Phototropic Responses of Corn Coleoptiles by Lateral Transport of Auxin. , 1963, Plant physiology.

[81]  M. Delbrück,et al.  Action and Transmission Spectra of Phycomyces. , 1960, Plant physiology.

[82]  J. Reinert Phototropism and Phototaxis , 1959 .

[83]  W. Shropshire,et al.  Action Spectrum of Phototropic Tip-Curvature of Avena. , 1958, Plant physiology.

[84]  J. Wilson,et al.  Phototropic auxin redistribution in corn coleoptiles. , 1957, Science.

[85]  J. L. Liverman,et al.  Reversible Photoreaction Controlling Expansion of Etiolated Bean-Leaf Disks. , 1955, Science.

[86]  M. W. Parker,et al.  A Reversible Photoreaction Controlling Seed Germination. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[87]  A. Galston Riboflavin, light, and the growth of plants. , 1950, Science.

[88]  A. Galston,et al.  STUDIES ON THE PHYSIOLOGY OF LIGHT ACTION. II. THE PHOTODYNAMIC ACTION OF RIBOFLAVIN , 1949 .

[89]  M. W. Parker,et al.  SPECTRAL SENSITIVITIES FOR LEAF AND STEM GROWTH OF ETIOLATED PEA SEEDLINGS AND THEIR SIMILARITY TO ACTION SPECTRA FOR PHOTOPERIODISM , 1949 .

[90]  G. Wald,et al.  PIGMENTS OF THE OAT COLEOPTILE. , 1936, Science.

[91]  S. Voerkel Untersuchungen über die Phototaxis der Chloroplasten , 1933, Planta.

[92]  Fr. Bachmann,et al.  Über die Wertigkeit von Strahlen verschiedener Wellenlänge für die phototropische Reizung von Avena sativa , 1930, Planta.

[93]  F. Bergann Untersuchungen über Lichtwachstum, Lichtkrümmung und Lichtabfall bei Avena sativa mit Hilfe monochromatischen Lichtes , 1930, Planta.

[94]  J. Priestley LIGHT AND GROWTH. I. THE EFFECT OF BRIEF LIGHT EXPOSURE UPON ETIOLATED PLANTS , 1925 .

[95]  F. Darwin,et al.  On a New Method of Estimating the Aperture of Stomata , 1911 .

[96]  C. Darwin Power of Movement in Plants , 1880 .

[97]  S. Lurie The effect of wavelength of light on stomatal opening , 2004, Planta.

[98]  K. L. Poff,et al.  Mutants of Arabidopsis thaliana with altered phototropism , 2004, Planta.

[99]  T. Ogawa,et al.  Synergistic action of red and blue light and action spectra for malate formation in guard cells of Vicia faba L. , 2004, Planta.

[100]  Minoru Kanehisa,et al.  Identification of a new cryptochrome class. Structure, function, and evolution. , 2003, Molecular cell.

[101]  X. Deng,et al.  Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. , 2001, Science.

[102]  D. Koller,et al.  Plants in search of sunlight , 2000 .

[103]  E. Huala,et al.  Blue-light photoreceptors in higher plants. , 1999, Annual review of cell and developmental biology.

[104]  J. Zhu,et al.  Stomata from npq1, a zeaxanthin-less Arabidopsis mutant, lack a specific response to blue light. , 1999, Plant & cell physiology.

[105]  W. Haupt Chloroplast Movement: from Phenomenology to Molecular Biology , 1999 .

[106]  W. Briggs,et al.  The Transduction of Blue Light Signals in Higher Plants , 1994 .

[107]  H. Asard,et al.  LIAC Activity in Higher Plants , 1991 .

[108]  W. Briggs,et al.  Characterization of a Rapid, Blue Light-Mediated Change in Detectable Phosphorylation of a Plasma Membrane Protein from Etiolated Pea (Pisum sativum L.) Seedlings. , 1990, Plant physiology.

[109]  W. Briggs,et al.  Regulation of pea epicotyl elongation by blue light : fluence-response relationships and growth distribution. , 1989, Plant physiology.

[110]  J. E. Dale,et al.  The Control of Leaf Expansion , 1988 .

[111]  H. Senger Blue light responses : phenomena and occurrence in plants and microorganisms , 1987 .

[112]  H. Senger Blue Light Effects in Biological Systems , 1984, Proceedings in Life Sciences.

[113]  W. Briggs,et al.  The Blue Light Receptor(s): Primary Reactions and Subsequent Metabolic Changes , 1981 .

[114]  W. Shropshire Carotenoids as Primary Photoreceptors in Blue-Light Responses , 1980 .

[115]  H. Senger The Blue Light Syndrome , 1980, Proceedings in Life Sciences.

[116]  T. Hsiao,et al.  Action Spectra for Guard Cell Rb Uptake and Stomatal Opening in Vivia faba. , 1973, Plant physiology.

[117]  W. Briggs Chapter 8 – PHOTOTROPISM IN HIGHER PLANTS1 , 1964 .

[118]  A. Galston Phototropism of stems, roots and coleoptiles , 1959 .

[119]  A. Galston,et al.  Studies on the physiology of light action; auxin and the light inhibition of growth. , 1949, American journal of botany.

[120]  H. Yin DIAPHOTOTROPIC MOVEMENT OF THE LEAVES OF MALVA NEGLECTA , 1938 .

[121]  F. W. Went Wuchsstoff und Wachstum , 1927 .

[122]  G. Senn Die Gestalts- und Lageveränderung der Pflanzen-Chromatophoren , 1910, Nature.

[123]  A. H. Blaauw Die Perzeption des Lichtes , 1909 .

[124]  F. Darwin Observations on stomata , 1898, Proceedings of the Royal Society of London.

[125]  Charles Giles Bridle Daubeny,et al.  On the Action of Light upon Plants, and of Plants upon the Atmosphere. [Abstract] , 1830 .