Dynamic analysis of metabolomics reveals the potential associations between colonic peptides and serum appetite-related hormones.

[1]  F. Guay,et al.  Toward Precise Nutrient Value of Feed in Growing Pigs: Effect of Meal Size, Frequency and Dietary Fibre on Nutrient Utilisation , 2021, Animals : an open access journal from MDPI.

[2]  I. Depoortere,et al.  Circadian clocks in the digestive system , 2021, Nature Reviews Gastroenterology & Hepatology.

[3]  F. Reimann,et al.  Metabolic Messengers: glucagon-like peptide 1 , 2021, Nature Metabolism.

[4]  K. Clément,et al.  Gut microbiota-derived metabolites as central regulators in metabolic disorders , 2020, Gut.

[5]  N. Segata,et al.  A collection of bacterial isolates from the pig intestine reveals functional and taxonomic diversity , 2020, Nature Communications.

[6]  Margaret H. Frank,et al.  TBtools - an integrative toolkit developed for interactive analyses of big biological data. , 2020, Molecular plant.

[7]  A. Sartorio,et al.  The Appetite−Suppressant and GLP-1-Stimulating Effects of Whey Proteins in Obese Subjects are Associated with Increased Circulating Levels of Specific Amino Acids , 2020, Nutrients.

[8]  Jianguo Xia,et al.  Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data , 2020, Nature Protocols.

[9]  H. Grill,et al.  Glucagon-like peptide 1 (GLP-1) , 2019, Molecular metabolism.

[10]  D. Bechtold,et al.  Insulin/IGF-1 Drives PERIOD Synthesis to Entrain Circadian Rhythms with Feeding Time , 2019, Cell.

[11]  G. Rogers,et al.  The Influence of the Gut Microbiome on Host Metabolism Through the Regulation of Gut Hormone Release , 2019, Front. Physiol..

[12]  A. Nokhodchi,et al.  Leucine–glycine and carnosine dipeptides prevent diabetes induced by multiple low‐doses of streptozotocin in an experimental model of adult mice , 2019, Journal of diabetes investigation.

[13]  E. Fukusaki,et al.  Free D-amino acids produced by commensal bacteria in the colonic lumen , 2018, Scientific Reports.

[14]  T. Matsui,et al.  Intestinal absorption of small peptides: a review , 2018, International Journal of Food Science & Technology.

[15]  P. Baldi,et al.  Atlas of Circadian Metabolism Reveals System-wide Coordination and Communication between Clocks , 2018, Cell.

[16]  E. Poggiogalle,et al.  Circadian regulation of glucose, lipid, and energy metabolism in humans. , 2017, Metabolism: clinical and experimental.

[17]  T. Dinan,et al.  Microbiota-Gut-Brain Axis: Modulator of Host Metabolism and Appetite. , 2017, The Journal of nutrition.

[18]  I. Amit,et al.  Microbiota Diurnal Rhythmicity Programs Host Transcriptome Oscillations , 2016, Cell.

[19]  Pierre Baldi,et al.  Lung Adenocarcinoma Distally Rewires Hepatic Circadian Homeostasis , 2016, Cell.

[20]  T. Hökfelt,et al.  Gut Commensal E. coli Proteins Activate Host Satiety Pathways following Nutrient-Induced Bacterial Growth. , 2016, Cell metabolism.

[21]  J. Holst,et al.  The intestinal distribution pattern of appetite- and glucose regulatory peptides in mice, rats and pigs , 2016, BMC Research Notes.

[22]  A. Ribas-Latre,et al.  Interdependence of nutrient metabolism and the circadian clock system: Importance for metabolic health , 2016, Molecular metabolism.

[23]  Pierre Baldi,et al.  Comparative Circadian Metabolomics Reveal Differential Effects of Nutritional Challenge in the Serum and Liver* , 2015, The Journal of Biological Chemistry.

[24]  H. Freeman Clinical relevance of intestinal peptide uptake. , 2015, World journal of gastrointestinal pharmacology and therapeutics.

[25]  Eran Segal,et al.  Transkingdom Control of Microbiota Diurnal Oscillations Promotes Metabolic Homeostasis , 2014, Cell.

[26]  Kunihiko Sadakane,et al.  MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph , 2014, Bioinform..

[27]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[28]  J. Denu,et al.  Circadian Clock NAD+ Cycle Drives Mitochondrial Oxidative Metabolism in Mice , 2013, Science.

[29]  H. Daniel,et al.  Oligopeptides stimulate glucagon-like peptide-1 secretion in mice through proton-coupled uptake and the calcium-sensing receptor , 2013, Diabetologia.

[30]  Zhengwei Zhu,et al.  CD-HIT: accelerated for clustering the next-generation sequencing data , 2012, Bioinform..

[31]  J. Takahashi,et al.  Central and peripheral circadian clocks in mammals. , 2012, Annual review of neuroscience.

[32]  J. Nicholson,et al.  Host-Gut Microbiota Metabolic Interactions , 2012, Science.

[33]  Steven A. Brown,et al.  The human circadian metabolome , 2012, Proceedings of the National Academy of Sciences.

[34]  Karl Kornacker,et al.  JTK_CYCLE: An Efficient Nonparametric Algorithm for Detecting Rhythmic Components in Genome-Scale Data Sets , 2010, Journal of biological rhythms.

[35]  Yongjun Hu,et al.  Significance and Regional Dependency of Peptide Transporter (PEPT) 1 in the Intestinal Permeability of Glycylsarcosine: In Situ Single-Pass Perfusion Studies in Wild-Type and Pept1 Knockout Mice , 2010, Drug Metabolism and Disposition.

[36]  Tomoyoshi Soga,et al.  Measurement of internal body time by blood metabolomics , 2009, Proceedings of the National Academy of Sciences.

[37]  W. R. Wikoff,et al.  Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites , 2009, Proceedings of the National Academy of Sciences.

[38]  R. Reimer,et al.  Dairy protein and leucine alter GLP-1 release and mRNA of genes involved in intestinal lipid metabolism in vitro. , 2009, Nutrition.

[39]  P. Turnbaugh,et al.  Microbial ecology: Human gut microbes associated with obesity , 2006, Nature.

[40]  E. Mardis,et al.  An obesity-associated gut microbiome with increased capacity for energy harvest , 2006, Nature.

[41]  D. Merlin,et al.  The oligopeptide transporter hPepT1: gateway to the innate immune response , 2006, Laboratory Investigation.

[42]  F. Bäckhed,et al.  Obesity alters gut microbial ecology. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[43]  P. Brubaker,et al.  Direct and indirect mechanisms regulating secretion of glucagon-like peptide-1 and glucagon-like peptide-2. , 2003, Canadian journal of physiology and pharmacology.

[44]  B. Wisse,et al.  A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. , 2001, Diabetes.

[45]  P. Brubaker,et al.  Regulation of intestinal proglucagon-derived peptide secretion by glucose-dependent insulinotropic peptide in a novel enteroendocrine loop. , 1993, Endocrinology.

[46]  S. Fetissov Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour , 2017, Nature Reviews Endocrinology.

[47]  M. Westerterp-Plantenga,et al.  Ghrelin and glucagon-like peptide 1 concentrations, 24-h satiety, and energy and substrate metabolism during a high-protein diet and measured in a respiration chamber. , 2006, The American journal of clinical nutrition.