Observing the pole tide with satellite altimetry

[1] Almost 9 years of sea surface height observations from the TOPEX/Poseidon (T/P) satellite altimetry mission are used to observe the geocentric pole tide deformations of the sea surface. If the oceans are assumed to have an equilibrium response, then satellite altimeters effectively observe the equipotential surface that is associated with the solid Earth and ocean pole tide deformations. The long-wavelength component of the geocentric pole tide deformations at the Chandler wobble period is observed from T/P altimetry to be consistent with the theoretical self-consistent equilibrium response of the ocean pole tide. The geocentric pole tide explains 70% of the variance in the degree 2 order 1 spherical harmonic component of the residual sea surface heights that are observed by T/P, after removing the seasonal, inverse barometer, and lunisolar tidal effects. If the long-wavelength component of the ocean pole tide is assumed to have an equilibrium response at the Chandler wobble period, then satellite altimetry proves to be another geodetic technique that can be used to estimate the Love number k2 at that period.

[1]  W. Farrell Deformation of the Earth by surface loads , 1972 .

[2]  J. Carton,et al.  Modelling the pole tide and its effect on the Earth's rotation , 1986 .

[3]  ROBT. B. HAYWARD,et al.  On the Variation of Latitude , 1892, Nature.

[4]  F. Dahlen,et al.  The period and Q of the Chandler wobble , 1981 .

[5]  B. Luzum,et al.  Path of the Mean Rotational Pole From 1899 to 1994 , 1996 .

[6]  John M. Wahr,et al.  Deformation induced by polar motion , 1985 .

[7]  John M. Wahr,et al.  Spectroscopic Analysis of Global Tide Gauge Sea Level Data , 1990 .

[8]  Richard D. Ray,et al.  Oceanic tides from Geosat altimetry , 1990 .

[9]  Richard D. Ray,et al.  A Global Ocean Tide Model From TOPEX/POSEIDON Altimetry: GOT99.2 , 1999 .

[10]  Richard S. Gross,et al.  the excitation of the Chandler wobble , 2000 .

[11]  C. Wunsch,et al.  The Pole Tide , 1973 .

[12]  R. Cùrrie Period and Qw of The Chandler Wobble , 1974 .

[13]  E. J. Christensen,et al.  TOPEX/POSEIDON mission overview , 1994 .

[14]  S. Desai,et al.  Monthly and fortnightly tidal variations of the Earth's rotation rate predicted by a TOPEX/POSEIDON Empirical Ocean Tide Model , 1999 .

[15]  J. Carton The variation with frequency of the long‐period tides , 1983 .

[16]  D. Agnew,et al.  Self-consistent equilibrium ocean tides , 1978 .

[17]  J. D. Zund,et al.  Geophysical Geodesy: The Slow Deformation of the Earth , 1991 .

[18]  J. Proudman The condition that a long period tide shall follow the equilibrium law , 1960 .

[19]  S. Dickman,et al.  Tide gauge data analysis of the pole tide in the North Sea , 1996 .

[20]  Masatsugu Ooe,et al.  An optimal complex AR.MA model of the Chandler wobble , 1978 .

[21]  Kirk S. Hansen,et al.  Normal Modes of the World Ocean. Part II: Description of Modes in the Period Range 8 to 80 Hours , 1981 .

[22]  Richard S. Gross,et al.  Correspondence between theory and observations of polar motion , 1992 .

[23]  A. Miller,et al.  The Fortnightly and Monthly Tides: Resonant Rossby Waves or Nearly Equilibrium Gravity Waves? , 1993 .

[24]  F. Dahlen The Passive Influence of the Oceans upon the Rotation of the Earth , 1976 .

[25]  B. Chao,et al.  Wind stress forcing of the North Sea 'pole tide' , 2000 .

[26]  S. Desai,et al.  Empirical ocean tide models estimated from TOPEX/POSEIDON altimetry , 1995 .