Randomized Memetic Artificial Bee Colony Algorithm

Artificial Bee Colony (ABC) optimization algorithm is one of the recent population based probabilistic approach developed for global optimization. ABC is simple and has been showed significant improvement over other Nature Inspired Algorithms (NIAs) when tested over some standard benchmark functions and for some complex real world optimization problems. Memetic Algorithms also become one of the key methodologies to solve the very large and complex real-world optimization problems. The solution search equation of Memetic ABC is based on Golden Section Search and an arbitrary value which tries to balance exploration and exploitation of search space. But still there are some chances to skip the exact solution due to its step size. In order to balance between diversification and intensification capability of the Memetic ABC, it is randomized the step size in Memetic ABC. The proposed algorithm is named as Randomized Memetic ABC (RMABC). In RMABC, new solutions are generated nearby the best so far solution and it helps to increase the exploitation capability of Memetic ABC. The experiments on some test problems of different complexities and one well known engineering optimization application show that the proposed algorithm outperforms over Memetic ABC (MeABC) and some other variant of ABC algorithm(like Gbest guided ABC (GABC),Hooke Jeeves ABC (HJABC), Best-So-Far ABC (BSFABC) and Modified ABC (MABC) in case of almost all the problems.

[1]  J. Kiefer,et al.  Sequential minimax search for a maximum , 1953 .

[2]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[3]  Robert D. Carr,et al.  Alignment Of Protein Structures With A Memetic Evolutionary Algorithm , 2002, GECCO.

[4]  Xin-She Yang,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010, NICSO.

[5]  R. W. Derksen,et al.  Differential Evolution in Aerodynamic Optimization , 1999 .

[6]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[7]  Andries Petrus Engelbrecht,et al.  Differential evolution methods for unsupervised image classification , 2005, 2005 IEEE Congress on Evolutionary Computation.

[8]  Xin Yao,et al.  A Memetic Algorithm for VLSI Floorplanning , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[9]  Pakize Erdogmus,et al.  Reactive power optimization with artificial bee colony algorithm , 2010 .

[10]  W. J. Bell Searching Behaviour: The Behavioural Ecology of Finding Resources , 1991 .

[11]  Amit Konar,et al.  Differential Evolution Using a Neighborhood-Based Mutation Operator , 2009, IEEE Transactions on Evolutionary Computation.

[12]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[13]  Harish Sharma,et al.  Artificial bee colony algorithm: a survey , 2013, Int. J. Adv. Intell. Paradigms.

[14]  Li Cheng,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010 .

[15]  Mitsuo Gen,et al.  Parallel machine scheduling problems using memetic algorithms , 1997 .

[16]  Xingsi Xue,et al.  Optimizing ontology alignment through Memetic Algorithm based on Partial Reference Alignment , 2014, Expert Syst. Appl..

[17]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[18]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[19]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[20]  Charles Fleurent,et al.  Genetic and hybrid algorithms for graph coloring , 1996, Ann. Oper. Res..

[21]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[22]  Dervis Karaboga,et al.  A modified Artificial Bee Colony algorithm for real-parameter optimization , 2012, Inf. Sci..

[23]  Dervis Karaboga,et al.  Artificial Bee Colony (ABC) Optimization Algorithm for Training Feed-Forward Neural Networks , 2007, MDAI.

[24]  Sandeep Kumar,et al.  Enhanced Artificial Bee Colony Algorithm and It ’ s Application to Travelling Salesman Problem , 2013 .

[25]  Gregory Gutin,et al.  Memetic Algorithm for the Generalized Asymmetric Traveling Salesman Problem , 2007, NICSO.

[26]  Janez Brest,et al.  Memetic artificial bee colony algorithm for large-scale global optimization , 2012, 2012 IEEE Congress on Evolutionary Computation.

[27]  Junjie Li,et al.  Structural inverse analysis by hybrid simplex artificial bee colony algorithms , 2009 .

[28]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[29]  Shengxiang Yang,et al.  A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems , 2009, Soft Comput..

[30]  Oleg Chertov,et al.  Memetic Algorithm for Solving the Task of Providing Group Anonymity , 2013, WCSC.

[31]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998, J. Comput. Chem..

[32]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[33]  N. Mort,et al.  Hybrid Genetic Algorithms for Telecommunications Network Back-Up Routeing , 2000 .

[34]  Edmund K. Burke,et al.  A Memetic Algorithm for University Exam Timetabling , 1995, PATAT.

[35]  Sam Kwong,et al.  Gbest-guided artificial bee colony algorithm for numerical function optimization , 2010, Appl. Math. Comput..

[36]  Marco Dorigo,et al.  Towards group transport by swarms of robots , 2009, Int. J. Bio Inspired Comput..

[37]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[38]  Colin Reeves,et al.  Hybrid genetic algorithms for bin-packing and related problems , 1996, Ann. Oper. Res..

[39]  Nurhan Karaboga,et al.  A new design method based on artificial bee colony algorithm for digital IIR filters , 2009, J. Frankl. Inst..

[40]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998 .

[41]  W. Hart Adaptive global optimization with local search , 1994 .

[42]  Harish Sharma,et al.  Memetic search in artificial bee colony algorithm , 2013, Soft Computing.

[43]  Xin-She Yang,et al.  Engineering optimisation by cuckoo search , 2010, Int. J. Math. Model. Numer. Optimisation.

[44]  Wendy Johnson,et al.  Introduction to Evolutionary Computation (lesson & activity) , 2012 .

[45]  Dervis Karaboga,et al.  A comparative study of Artificial Bee Colony algorithm , 2009, Appl. Math. Comput..

[46]  Alok Singh,et al.  An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem , 2009, Appl. Soft Comput..

[47]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[48]  Godfrey C. Onwubolu,et al.  New optimization techniques in engineering , 2004, Studies in Fuzziness and Soft Computing.

[49]  T. Achalakul,et al.  The best-sofar selection in Artificial Bee Colony algorithm , 2015 .

[50]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[51]  Zelda B. Zabinsky,et al.  A Numerical Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems , 2005, J. Glob. Optim..

[52]  Antoniya Georgieva,et al.  Global optimization based on novel heuristics, low-discrepancy sequences and genetic algorithms , 2009, Eur. J. Oper. Res..

[53]  Tiranee Achalakul,et al.  The best-so-far selection in Artificial Bee Colony algorithm , 2011, Appl. Soft Comput..

[54]  Fred W. Glover,et al.  A tabu search based memetic algorithm for the maximum diversity problem , 2014, Eng. Appl. Artif. Intell..

[55]  Mustafa Sonmez,et al.  Artificial Bee Colony algorithm for optimization of truss structures , 2011, Appl. Soft Comput..

[56]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[57]  Sandeep Kumar,et al.  A Novel Hybrid Crossover based Artificial Bee Colony Algorithm for Optimization Problem , 2013, ArXiv.

[58]  John R. Koza,et al.  Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems , 1990 .

[59]  Aladdin Ayesh,et al.  Swarms-based emotions modelling , 2009, Int. J. Bio Inspired Comput..

[60]  R. Srinivasa Rao,et al.  Optimization of Distribution Network Configuration for Loss Reduction Using Artificial Bee Colony Algorithm , 2008 .

[61]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[62]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[63]  Lale Özbakır,et al.  Artificial Bee Colony Algorithm and Its Application to Generalized Assignment Problem , 2007 .

[64]  Kay Chen Tan,et al.  A Multiobjective Memetic Algorithm Based on Particle Swarm Optimization , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[65]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[66]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[67]  Edmund K. Burke,et al.  The practice and theory of automated timetabling , 2014, Ann. Oper. Res..

[68]  M. El-Sharkawi,et al.  Introduction to Evolutionary Computation , 2008 .

[69]  Junjie Li,et al.  Artificial Bee Colony Algorithm with Local Search for Numerical Optimization , 2011, J. Softw..

[70]  D. Karaboga,et al.  On the performance of artificial bee colony (ABC) algorithm , 2008, Appl. Soft Comput..

[71]  E. Sandgren,et al.  Nonlinear Integer and Discrete Programming in Mechanical Design Optimization , 1990 .