Structural basis for Duffy recognition by the malaria parasite Duffy-binding-like domain

[1]  I. Verma,et al.  Duffy blood group determinants and malaria in India , 1993, Journal of Genetics.

[2]  N. Tolia,et al.  Structural Basis for the EBA-175 Erythrocyte Invasion Pathway of the Malaria Parasite Plasmodium falciparum , 2005, Cell.

[3]  Priyabrata Pattnaik,et al.  Receptor-binding residues lie in central regions of Duffy-binding-like domains involved in red cell invasion and cytoadherence by malaria parasites. , 2005, Blood.

[4]  S. Hay,et al.  The global distribution of clinical episodes of Plasmodium falciparum malaria , 2005, Nature.

[5]  Syed Shams Yazdani,et al.  Mapping binding residues in the Plasmodium vivax domain that binds Duffy antigen during red cell invasion , 2005, Molecular microbiology.

[6]  C. M. Owens,et al.  Sulphated tyrosines mediate association of chemokines and Plasmodium vivax Duffy binding protein with the Duffy antigen/receptor for chemokines (DARC) , 2005, Molecular microbiology.

[7]  J. Adams,et al.  Conserved residues in the Plasmodium vivax Duffy-binding protein ligand domain are critical for erythrocyte receptor recognition. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[8]  C. Chitnis,et al.  Definition of structural elements in Plasmodium vivax and P. knowlesi Duffy-binding domains necessary for erythrocyte invasion. , 2003, The Biochemical journal.

[9]  Peter D. Kwong,et al.  HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites , 2002, Nature.

[10]  Ogobara K. Doumbo,et al.  The pathogenic basis of malaria , 2002, Nature.

[11]  J. Adams,et al.  The erythrocyte binding motif of plasmodium vivax duffy binding protein is highly polymorphic and functionally conserved in isolates from Papua New Guinea. , 2000, Molecular and biochemical parasitology.

[12]  A. Cowman,et al.  Targeted disruption of an erythrocyte binding antigen in Plasmodium falciparum is associated with a switch toward a sialic acid-independent pathway of invasion. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[13]  G J Kleywegt,et al.  Experimental assessment of differences between related protein crystal structures. , 1999, Acta crystallographica. Section D, Biological crystallography.

[14]  Thomas C. Terwilliger,et al.  Automated MAD and MIR structure solution , 1999, Acta crystallographica. Section D, Biological crystallography.

[15]  Joseph Sodroski,et al.  Tyrosine Sulfation of the Amino Terminus of CCR5 Facilitates HIV-1 Entry , 1999, Cell.

[16]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[17]  Peter D. Kwong,et al.  The antigenic structure of the HIV gp120 envelope glycoprotein , 1998, Nature.

[18]  R M Esnouf,et al.  An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. , 1997, Journal of molecular graphics & modelling.

[19]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[20]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[21]  E A Merritt,et al.  Raster3D: photorealistic molecular graphics. , 1997, Methods in enzymology.

[22]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.

[23]  Gérard Bricogne,et al.  SHARP: maximum-likelihood refinement of heavy-atom parameters in the MIR and MAD methods , 1996 .

[24]  M. Patarroyo,et al.  Genetic polymorphism of the Duffy receptor binding domain of Plasmodium vivax in Colombian wild isolates. , 1996, Molecular and biochemical parasitology.

[25]  J. Adams,et al.  Natural variation within the principal adhesion domain of the Plasmodium vivax duffy binding protein , 1994, Infection and immunity.

[26]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[27]  A. Brunger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. , 1992 .

[28]  A. Brünger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures , 1992, Nature.

[29]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[30]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[31]  T. Wellems,et al.  The duffy receptor family of plasmodium knowlesi is located within the micronemes of invasive malaria merozoites , 1990, Cell.

[32]  I. Wilson,et al.  Structural basis of immune recognition of influenza virus hemagglutinin. , 1990, Annual review of immunology.

[33]  L. Miller,et al.  The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. , 1976, The New England journal of medicine.

[34]  J. Dvorak,et al.  Erythrocyte receptors for (Plasmodium knowlesi) malaria: Duffy blood group determinants. , 1975, Science.