Lipase protein engineering.

[1]  D Schomburg,et al.  Analysis of the catalytic mechanism of a fungal lipase using computer-aided design and structural mutants. , 1996, Protein engineering.

[2]  A. Svendsen,et al.  Spectroscopic studies of the interfacial binding of Humicola lanuginosa lipase , 1998 .

[3]  I. G. Clausen Aspects in lipase screening , 1997 .

[4]  P. Kinnunen,et al.  Detergent-induced conformational changes of Humicola lanuginosa lipase studied by fluorescence spectroscopy. , 2000, Biophysical journal.

[5]  R. Verger,et al.  Lipases: Interfacial Enzymes with Attractive Applications. , 1998, Angewandte Chemie.

[6]  T. Vernet,et al.  Redesigning the active site of Geotrichum candidum lipase. , 1995, Protein engineering.

[7]  F. Winkler,et al.  Structure of human pancreatic lipase , 1990, Nature.

[8]  J. Schrag,et al.  Lipases and alpha/beta hydrolase fold. , 1997, Methods in enzymology.

[9]  D. Bourgeois,et al.  A pancreatic lipase with a phospholipase A1 activity: crystal structure of a chimeric pancreatic lipase-related protein 2 from guinea pig. , 1996, Structure.

[10]  R. Davis,et al.  Lipase engineering: a window into structure-function relationships. , 1997, Methods in enzymology.

[11]  F. Arnold,et al.  Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide. , 1996, Protein engineering.

[12]  R. Verger,et al.  LIPASE STEREOSELECTIVITY AND REGIOSELECTIVITY TOWARD THREE ISOMERS OF DICAPRIN : A KINETIC STUDY BY THE MONOMOLECULAR FILM TECHNIQUE , 1995 .

[13]  H. Fukuda,et al.  Comparative study of commercially available lipases in hydrolysis reaction of phosphatidylcholine , 1997 .

[14]  U. Bornscheuer,et al.  Directed evolution of an esterase: screening of enzyme libraries based on pH-indicators and a growth assay. , 1999, Bioorganic & medicinal chemistry.

[15]  J. Vind,et al.  Effect of mutations in Candida antarctica B lipase. , 1998, Chemistry and physics of lipids.

[16]  R. Verger ‘Interfacial activation’ of lipases: facts and artifacts , 1997 .

[17]  P. Kinnunen,et al.  Active serine involved in the stabilization of the active site loop in the Humicola lanuginosa lipase. , 1998, Biochemistry.

[18]  I. G. Clausen,et al.  Probing a functional role of Glu87 and Trp89 in the lid ofHumicola lanuginosa lipase through transesterification reactions in organic solvent , 1995, Journal of protein chemistry.

[19]  C. Cambillau,et al.  Dynamics of Fusarium solani cutinase investigated through structural comparison among different crystal forms of its variants , 1996, Proteins.

[20]  S. Patel,et al.  Mutational analysis of structural features of rat hormone-sensitive lipase. , 1998, Biochemistry.

[21]  M. Haas,et al.  Cloning, expression and characterization of a cDNA encoding a lipase from Rhizopus delemar. , 1991, Gene.

[22]  The consequences of engineering an extra disulfide bond in the Penicillium camembertii mono- and diglyceride specific lipase. , 1996, Protein engineering.

[23]  R C Cox,et al.  Identification of a calcium binding site in Staphylococcus hyicus lipase: generation of calcium-independent variants. , 1999, Biochemistry.

[24]  L. Norskov,et al.  A serine protease triad forms the catalytic centre of a triacylglycerol lipase , 1990, Nature.

[25]  C. Cambillau,et al.  Engineering cysteine mutants to obtain crystallographic phases with a cutinase from Fusarium solani pisi. , 1993, Protein engineering.

[26]  P. Lohse,et al.  Human lysosomal acid lipase/cholesteryl ester hydrolase and human gastric lipase: site-directed mutagenesis of Cys227 and Cys236 results in substrate-dependent reduction of enzymatic activity. , 1997, Journal of lipid research.

[27]  O. Berg,et al.  Interfacial activation of triglyceride lipase from Thermomyces (Humicola) lanuginosa: kinetic parameters and a basis for control of the lid. , 1998, Biochemistry.

[28]  S. Petersen,et al.  Lipases : their structure, biochemistry and application , 1994 .

[29]  J. Pleiss,et al.  Probing the acyl binding site of acetylcholinesterase by protein engineering 1 Dedicated to Professo , 1999 .

[30]  D. Lawson,et al.  Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase. , 1992, Biochemistry.

[31]  C. Holm,et al.  Identification of essential aspartic acid and histidine residues of hormone‐sensitive lipase: apparent residues of the catalytic triad , 1997, FEBS letters.

[32]  I. G. Clausen,et al.  The role of Glu87 and Trp89 in the lid of Humicola lanuginosa lipase. , 1996, Protein engineering.

[33]  U. T. Bornacheuer Recent advances in the lipase-catalyzed biotransformation of fats and oils , 1999 .

[34]  R. Othman,et al.  Tryptophan-containing mutant of human (group IIa) secreted phospholipase A2 has a dramatically increased ability to hydrolyze phosphatidylcholine vesicles and cell membranes. , 1998, Biochemistry.

[35]  M. Haas,et al.  Additive effects of acyl-binding site mutations on the fatty acid selectivity of Rhizopus delemar lipase , 1997 .

[36]  C. Cambillau,et al.  Structure-activity of cutinase, a small lipolytic enzyme. , 1999, Biochimica et biophysica acta.

[37]  G J Kleywegt,et al.  Crystallographic and molecular-modeling studies of lipase B from Candida antarctica reveal a stereospecificity pocket for secondary alcohols. , 1995, Biochemistry.

[38]  F. Arnold Enzyme engineering reaches the boiling point. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[39]  T. Yamane,et al.  In Vitro Analysis of Roles of a Disulfide Bridge and a Calcium Binding Site in Activation of Pseudomonas sp. Strain KWI-56 Lipase , 2000, Journal of bacteriology.

[40]  C. Cambillau,et al.  Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state. , 1996, Biochemistry.

[41]  O. Edholm,et al.  Theoretical studies of Rhizomucor miehei lipase activation. , 1993, Protein engineering.

[42]  W. Stemmer Rapid evolution of a protein in vitro by DNA shuffling , 1994, Nature.

[43]  H. van Tilbeurgh,et al.  The 2.46 A resolution structure of the pancreatic lipase-colipase complex inhibited by a C11 alkyl phosphonate. , 1994, Biochemistry.

[44]  Z. Derewenda,et al.  News from the interface: the molecular structures of triacylglyceride lipases. , 1993, Trends in biochemical sciences.

[45]  R D Schmid,et al.  Rational design of Rhizopus oryzae lipase with modified stereoselectivity toward triradylglycerols. , 1998, Protein engineering.

[46]  R. Verger,et al.  Human pancreatic lipase: colipase dependence and interfacial binding of lid domain mutants. , 1999, Biochemistry.

[47]  B. Dijkstra,et al.  University of Groningen Structural basis of the chiral selectivity of Pseudomonas cepacia lipase , 2017 .

[48]  A. Baulard,et al.  Cloning, nucleotide sequence and expression in Escherichia coli of a lipase gene from Bacillus subtilis 168. , 1992, Biochimica et biophysica acta.

[49]  Shan Wu,et al.  [18] Structure and function of engineered Pseudomonas mendocina lipase , 1997 .

[50]  Janet L. Schottel,et al.  A novel variant of the catalytic triad in the Streptomyces scabies esterase , 1995, Nature Structural Biology.

[51]  D. Pignol,et al.  Pancreatic lipase-related protein type 1: a double mutation restores a significant lipase activity. , 1998, Biochemical and biophysical research communications.

[52]  R. Verger,et al.  Reactivation of the totally inactive pancreatic lipase RP1 by structure‐predicted point mutations , 1998, Proteins.

[53]  C. Pang,et al.  Lipoprotein lipase mutations and Alzheimer's disease. , 1999, American journal of medical genetics.

[54]  D. Tessier,et al.  Identification of residues essential for differential fatty acyl specificity of Geotrichum candidum lipases I and II. , 1997, Biochemistry.

[55]  C. Cambillau,et al.  Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent , 1992, Nature.

[56]  U. Bornscheuer,et al.  Hydrolases in Organic Synthesis: Regio- and Stereoselective Biotransformations , 1999 .

[57]  M. Egmond,et al.  Cutinase from Fusarium solani pisi hydrolyzing triglyceride analogues. Effect of acyl chain length and position in the substrate molecule on activity and enantioselectivity. , 1995, Biochemistry.

[58]  M. Egmond,et al.  Strategies and Design of Mutations in Lipases , 1996 .

[59]  C T Verrips,et al.  Pseudomonas glumae lipase: increased proteolytic stability by protein engineering. , 1993, Protein engineering.

[60]  L. Johnson,et al.  The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate , 1993, FEBS letters.

[61]  K. Dugi,et al.  Human Hepatic and Lipoprotein Lipase: The Loop Covering the Catalytic Site Mediates Lipase Substrate Specificity (*) , 1995, The Journal of Biological Chemistry.

[62]  Miroslaw Cygler,et al.  A Structural Basis for the Chiral Preferences of Lipases , 1995 .

[63]  T A Jones,et al.  The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. , 1994, Structure.

[64]  Yamaguchi Shotaro,et al.  Cloning and structure of the mono- and diacylglycerol lipase-encoding gene from Penicillium camembertii U-150. , 1991 .

[65]  Richard E. White,et al.  Somatostatin stimulates Ca2+-activated K+ channels through protein dephosphorylation , 1991, Nature.

[66]  J. Schrag,et al.  Analogs of reaction intermediates identify a unique substrate binding site in Candida rugosa lipase. , 1995, Biochemistry.

[67]  D. Hui,et al.  Aspartic acid 320 is required for optimal activity of rat pancreatic cholesterol esterase. , 1993, The Journal of biological chemistry.

[68]  M. Egmond,et al.  Interfacial binding of cutinase rather than its catalytic activity determines the steady state interfacial tension during oil drop lipid hydrolysis. , 1999, Chemistry and physics of lipids.

[69]  Jürgen Pleiss,et al.  Stereoselectivity of mucorales lipases toward triradylglycerols—A simple solution to a complex problem , 2008, Protein science : a publication of the Protein Society.

[70]  A. Svendsen,et al.  Biochemical properties of cloned lipases from the Pseudomonas family. , 1995, Biochimica et biophysica acta.

[71]  B Rubin,et al.  Insights into interfacial activation from an open structure of Candida rugosa lipase. , 1994, The Journal of biological chemistry.

[72]  D. Lawson,et al.  Probing the nature of substrate binding in Humicola lanuginosa lipase through X-ray crystallography and intuitive modelling. , 1994, Protein engineering.

[73]  S. Canaan,et al.  Site-directed removal of N-glycosylation sites in human gastric lipase. , 1999, European journal of biochemistry.

[74]  M. Gelb,et al.  Docking phospholipase A2 on membranes using electrostatic potential-modulated spin relaxation magnetic resonance. , 1998, Science.

[75]  Z. Derewenda,et al.  Structure and function of lipases. , 1994, Advances in protein chemistry.

[76]  H. Du,et al.  Characterization of Lysosomal Acid Lipase by Site-directed Mutagenesis and Heterologous Expression (*) , 1995, The Journal of Biological Chemistry.

[77]  F. Götz,et al.  Lipase of Staphylococcus hyicus: analysis of the catalytic triad by site-directed mutagenesis. , 1992, FEMS microbiology letters.

[78]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[79]  S. Petersen,et al.  Protein engineering the surface of enzymes. , 1998, Journal of biotechnology.

[80]  H. van Tilbeurgh,et al.  Structural basis for the substrate selectivity of pancreatic lipases and some related proteins. , 1998, Biochimica et biophysica acta.

[81]  A. Brzozowski,et al.  FLUORESCENCE STUDY OF FUNGAL LIPASE FROM HUMICOLA LANUGINOSA , 1998 .

[82]  I. G. Clausen,et al.  [19] Protein engineering of microbial lipases of industrial interest , 1997 .

[83]  B. Dijkstra,et al.  Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. , 1999, Annual review of microbiology.

[84]  O. Olsen,et al.  Computational studies of the activation of lipases and the effect of a hydrophobic environment. , 1997, Protein engineering.

[85]  Manfred T. Reetz,et al.  Creation of Enantioselective Biocatalysts for Organic Chemistry by In Vitro Evolution , 1997 .

[86]  Rubingh,et al.  Protein engineering from a bioindustrial point of view. , 1997, Current opinion in biotechnology.

[87]  Y. Shimada,et al.  C-terminal peptide of fusarium heterosporum lipase is necessary for its increasing thermostability. , 1998, Journal of biochemistry.

[88]  M. Egmond,et al.  The phospholipase activity of Staphylococcus hyicus lipase strongly depends on a single Ser to Val mutation. , 1998, Chemistry and physics of lipids.

[89]  L. Thim,et al.  A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex , 1991, Nature.

[90]  Ole Kirk,et al.  One Biocatalyst–Many Applications: The Use of Candida Antarctica B-Lipase in Organic Synthesis , 1998 .

[91]  M. Reetz,et al.  Superior Biocatalysts by Directed Evolution , 1999 .

[92]  Joel L. Sussman,et al.  The α/β hydrolase fold , 1992 .

[93]  Michael J. Haas,et al.  Altered acyl chain length specificity of Rhizopus delemar lipase through mutagenesis and molecular modeling , 1997, Lipids.

[94]  U. Bornscheuer,et al.  Characterization and enantioselectivity of a recombinant esterase from Pseudomonas fluorescens , 1998 .

[95]  M. Lowe Site-specific mutagenesis of human pancreatic lipase. , 1997, Methods in enzymology.