The advanced Moon micro-imager experiment (AMIE) on SMART-1: Scientific goals and expected results

Abstract The advanced Moon micro-imager experiment (AMIE) is the imaging system on board ESA mission to the Moon SMART-1; it makes use of a miniaturised detector and micro-processor electronics developed by SPACE X in the frame of the ESA technical programme. The AMIE micro-imager will provide high resolution CCD images of selected lunar areas and it will perform colour imaging through three filters at 750, 915 and 960 nm with a maximum resolution of 46 m/pixel at the perilune of 500 km. Specific scientific objectives will include (1) imaging of high latitude regions in the southern hemisphere, in particular the South Pole Aitken basin (SPA) and the permanently shadowed regions close to the South Pole, (2) determination of the photometric properties of the lunar surface from observations at different phase angles (physical properties of the regolith), (3) multi-band imaging for constraining the chemical and mineral composition of the surface, (4) detection and characterisation of lunar non-mare volcanic units, (5) study of lithological variations from impact craters and implications for crustal heterogeneity. The AMIE micro-imager will also support a Laser-link experiment to Earth, an On Board Autonomous Navigation investigation and a Lunar libration experiment coordinated with radio science measurements.

[1]  Zoran Sodnik,et al.  Composition of the lunar surface as will be seen from SMART‐1: A simulation using Clementine data , 2003 .

[2]  Lisa R. Gaddis,et al.  Rock types of South Pole‐Aitken basin and extent of basaltic volcanism , 2001 .

[3]  M. Malin Lunar red spots: Possible pre-mare materials , 1974 .

[4]  Paul G. Lucey,et al.  Clementine images of the lunar sample‐return stations: Refinement of FeO and TiO2 mapping techniques , 1997 .

[5]  G. J. Taylor,et al.  Abundance and Distribution of Iron on the Moon , 1995, Science.

[6]  S. Kaasalainen,et al.  The SMART-1 AMIE experiment: implication to the lunar opposition effect , 2002 .

[7]  Paul G. Lucey,et al.  Calculating iron contents of lunar highland materials surrounding Tycho crater from integrated Clementine UV‐visible and near‐infrared data , 2002 .

[8]  P. Pinet OPTICAL RESPONSE AND SURFACE PHYSICAL PROPERTIES OF THE LUNAR REGOLITH AT REINER GAMMA FORMATION FROM CLEMENTINE ORBITAL PHOTOMETRY: DERIVATION OF THE HAPKE PARAMETERS AT LOCAL SCALE , 2004 .

[9]  William K. Hartmann,et al.  Satellite-Sized Planetesimals and Lunar Origin , 1975 .

[10]  Y. Shkuratov,et al.  Photometric anomalies of the lunar surface: Results from Clementine data , 2003 .

[11]  Carle M. Pieters,et al.  Mineralogy of the lunar crust: Results from Clementine , 1999 .

[12]  S. Maurice,et al.  Integration of the Clementine UV‐VIS spectral reflectance data and the Lunar Prospector gamma‐ray spectrometer data: A global‐scale multielement analysis of the lunar surface using iron, titanium, and thorium abundances , 2002 .

[13]  Patrick Martin,et al.  Copernicus: A Regional Probe of the Lunar Interior , 1993, Science.

[14]  Paul G. Lucey,et al.  FeO and TiO2 concentrations in the South Pole‐Aitken basin: Implications for mantle composition and basin formation , 1998 .

[15]  R. Morris,et al.  Lunar Mare Soils: Space weathering and the major effects of surface‐correlated nanophase Fe , 2001 .

[16]  E. Fischer,et al.  A Sharper View of Impact Craters from Clementine Data , 1994, Science.

[17]  B. Foing,et al.  The SMART-1 Mission: Photometric Studies of the Moon with the AMIE Camera , 2003 .

[18]  P. Pinet,et al.  Lunar Photometry and Composition of Ejecta Terrains with AMIE/SMART-1 , 2003 .

[19]  S. Nozette,et al.  The Clementine Bistatic Radar Experiment , 1994, Science.

[20]  Paul Helfenstein,et al.  Submillimeter-Scale Topography of the Lunar Regolith , 1999 .

[21]  Carle M. Pieters,et al.  Surviving the heavy bombardment: Ancient material at the surface of South Pole-Aitken Basin , 2004 .

[22]  Patrick Pinet,et al.  Discrimination between maturity and composition of lunar soils from integrated Clementine UV‐visible/near‐infrared data: Application to the Aristarchus Plateau , 2000 .

[23]  H. Melosh,et al.  Magma ocean formation due to giant impacts , 1993 .

[24]  A. G. W. Cameron,et al.  The origin of the moon and the single-impact hypothesis III. , 1991 .

[25]  Luciano Iess,et al.  SMART-1 mission to the moon: Technology and science goals , 2003 .

[26]  S. Maurice,et al.  Fluxes of fast and epithermal neutrons from Lunar Prospector: evidence for water ice at the lunar poles. , 1998, Science.

[27]  J. Head,et al.  Gruithuisen domes region: A candidate for an extended nonmare volcanism unit on the Moon , 1999 .

[28]  Miguel Almeida,et al.  The Science Goals Of Esa's Smart-1 Mission To The Moon , 2001 .

[29]  Aristarchus Crater Spectroscopic Heterogeneity from Clementine UV-VIS-NIR Data , 1999 .

[30]  G. J. Taylor,et al.  Hansteen Alpha: A volcanic construct in the lunar highlands , 2003 .

[31]  V. I. Chikmachev,et al.  A Macromodel of the Lunar South-Pole-Region Relief , 1998 .

[32]  Alfred S. McEwen,et al.  Lunar impact basins: New data for the western limb and far side (Orientale and South Pole‐Aitken Basins) from the first Galileo flyby , 1993 .

[33]  David E. Smith,et al.  The Shape and Internal Structure of the Moon from the Clementine Mission , 1994, Science.

[34]  Patrick Pinet,et al.  Planetary regolith surface analogs:: optimized determination of Hapke parameters using multi-angular spectro-imaging laboratory data , 2003 .

[35]  Paul D. Spudis,et al.  Ancient Multiring Basins on the Moon Revealed by Clementine Laser Altimetry , 1994, Science.

[36]  Carle M. Pieters,et al.  Composition of the lunar highland crust from near‐infrared spectroscopy , 1986 .

[37]  R. Jaumann,et al.  Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum , 2003 .

[38]  Carle M. Pieters,et al.  Mineralogy of the Mafic Anomaly in the South Pole‐Aitken Basin: Implications for excavation of the lunar mantle , 1997 .

[39]  Gabriele Arnold,et al.  OPPOSITION EFFECT FROM CLEMENTINE DATA AND MECHANISMS OF BACKSCATTER , 1999 .

[40]  Paul G. Lucey,et al.  Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet‐visible images , 2000 .

[41]  C. Pieters,et al.  Remote geochemical analysis : elemental and mineralogical composition , 1993 .

[42]  Yves Langevin,et al.  The olivine at the lunar crater Copernicus as seen by Clementine NIR data , 2001 .

[43]  Alan B. Binder,et al.  Polar hydrogen deposits on the Moon , 2000 .

[44]  Patrick Pinet,et al.  Local and regional lunar regolith characteristics at Reiner Gamma Formation: Optical and spectroscopic properties from Clementine and Earth‐based data , 2000 .

[45]  V. Safronov,et al.  Evolution of the protoplanetary cloud and formation of the earth and the planets , 1972 .

[46]  J. Head,et al.  Geologic Setting and Provenance of Spectrally Distinct Pre-Mare Material of Possible Volcanic Origin , 1975 .

[47]  V. Shevchenko On the Cometary Origin of the Lunar Ice , 1999 .

[48]  Staffan Persson,et al.  SMART-1 mission description and development status , 2002 .