Nanoscale Precision of 3D Polymerization via Polarization Control

NATO SPS-985048 “Nanostructures for Highly Effi cient Infrared Detection” grant is acknowledged. D.G. is grateful for the fi nancial support by “FOKER” (Grant No. MIP-14459) grant from the Research Council of Lithuania.

[1]  Perry,et al.  Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. , 1995, Physical review letters.

[2]  Satoshi Kawata,et al.  Finer features for functional microdevices , 2001, Nature.

[3]  J. Chon,et al.  Splitting of the focal spot of a high numerical-aperture objective in free space , 2002 .

[4]  Y. Shimotsuma,et al.  Self-organized nanogratings in glass irradiated by ultrashort light pulses. , 2003, Physical review letters.

[5]  Hong‐Bo Sun,et al.  Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization , 2003 .

[6]  H. A. Schwettman,et al.  Midinfrared optical breakdown in transparent dielectrics. , 2003, Physical review letters.

[7]  Satoshi Kawata,et al.  Two-photon photopolymerization and 3D lithographic microfabrication , 2005 .

[8]  Saulius Juodkazis,et al.  Two-photon lithography of nanorods in SU-8 photoresist , 2005 .

[9]  Satoshi Kawata,et al.  Two-Photon Photopolymerization and 3D Lithographic Microfabrication , 2005 .

[10]  Zhizhan Xu,et al.  Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses , 2005 .

[11]  Barry Luther-Davies,et al.  Picosecond high-repetition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses , 2005 .

[12]  Min Gu,et al.  Angular momentum and geometrical phases in tight-focused circularly polarized plane waves , 2006 .

[13]  Klaus Sokolowski-Tinten,et al.  Multiphoton ionization in dielectrics: comparison of circular and linear polarization. , 2006 .

[14]  Dong-Yol Yang,et al.  Recent developments in the use of two‐photon polymerization in precise 2D and 3D microfabrications , 2006 .

[15]  Suwas Nikumb,et al.  Femtosecond laser patterning of Ta0.1W0.9Ox/ITO thin film stack , 2007 .

[16]  C. Fotakis,et al.  Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. , 2008, ACS nano.

[17]  Shoji Maruo,et al.  Recent progress in multiphoton microfabrication , 2008 .

[18]  Costas Fotakis,et al.  Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials. , 2009, Optics express.

[19]  Satoru Shoji,et al.  Size-dependent behaviors of femtosecond laser-prototyped polymer micronanowires. , 2009, Optics letters.

[20]  J. .. Woehl,et al.  Realistic modeling of the illumination point spread function in confocal scanning optical microscopy. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[21]  Saulius Juodkazis,et al.  Modification of refractive index by a single femtosecond pulse confined inside a bulk of a photorefractive crystal , 2010 .

[22]  Mangirdas Malinauskas,et al.  Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption , 2010 .

[23]  Yong‐Lai Zhang,et al.  Designable 3D nanofabrication by femtosecond laser direct writing , 2010 .

[24]  E. Gamaly The physics of ultra-short laser interaction with solids at non-relativistic intensities , 2011 .

[25]  Martin Wegener,et al.  Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [Invited] , 2011, 1105.5703.

[26]  Min Gu,et al.  Generation of λ/12 nanowires in chalcogenide glasses. , 2011, Nano letters.

[27]  Tommaso Baldacchini,et al.  Two-photon polymerization with variable repetition rate bursts of femtosecond laser pulses. , 2012, Optics express.

[28]  Lora Ramunno,et al.  Polarization-dependent femtosecond laser ablation of poly-methyl methacrylate , 2012 .

[29]  In-situ local temperature measurement during three-dimensional direct laser writing , 2013 .

[30]  A. Rode,et al.  Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations , 2013 .

[31]  G. Kim,et al.  Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy , 2013 .

[32]  Maria Farsari,et al.  Redox multiphoton polymerization for 3D nanofabrication. , 2013, Nano letters.

[33]  F. Ilday,et al.  Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses , 2013, Nature Photonics.

[34]  Jaroslaw Jacak,et al.  120 nm resolution and 55 nm structure size in STED-lithography. , 2013, Optics express.

[35]  J. Fischer,et al.  Three‐dimensional optical laser lithography beyond the diffraction limit , 2013 .

[36]  K Staliunas,et al.  Flat lensing in the visible frequency range by woodpile photonic crystals. , 2013, Optics letters.

[37]  A. Piskarskas,et al.  Ultrafast laser nanostructuring of photopolymers: a decade of advances , 2013 .

[38]  Hong-Bo Sun,et al.  Dynamic laser prototyping for biomimetic nanofabrication , 2014 .

[39]  K. Sugioka,et al.  Ultrafast lasers—reliable tools for advanced materials processing , 2014, Light: Science & Applications.

[40]  Yang Gao,et al.  Two-photon polymerization: investigation of chemical and mechanical properties of resins using Raman microspectroscopy. , 2014, Optics letters.

[41]  H Zeng,et al.  Beam focalization in reflection from flat dielectric subwavelength gratings. , 2014, Optics letters.

[42]  S. Juodkazis,et al.  Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances , 2014 .

[43]  Martin Wegener,et al.  Polymerization Kinetics in Three‐Dimensional Direct Laser Writing , 2014, Advanced materials.

[44]  Hiroaki Misawa,et al.  Surface-plasmon-mediated programmable optical nanofabrication of an oriented silver nanoplate. , 2014, ACS nano.

[45]  Mangirdas Malinauskas,et al.  Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics , 2015 .

[46]  Mangirdas Malinauskas,et al.  Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography , 2015, Biofabrication.

[47]  Lei Wang,et al.  Controllable assembly of silver nanoparticles induced by femtosecond laser direct writing , 2015, Science and technology of advanced materials.

[48]  Frank A. Müller,et al.  Polarisation-dependent generation of fs-laser induced periodic surface structures , 2015 .

[49]  Erik H. Waller,et al.  Three‐Dimensional μ‐Printing: An Enabling Technology , 2015 .

[50]  Bianca Buchegger,et al.  Stimulated Emission Depletion Lithography with Mercapto-Functional Polymers , 2016, ACS nano.

[51]  Lan Jiang,et al.  Laser‐Directed Assembly of Aligned Carbon Nanotubes in Three Dimensions for Multifunctional Device Fabrication , 2016, Advanced materials.

[52]  Saulius Juodkazis,et al.  Ultrafast laser processing of materials: from science to industry , 2016, Light: Science & Applications.

[53]  Torsten Scherer,et al.  Fabrication of Conductive 3D Gold‐Containing Microstructures via Direct Laser Writing , 2016, Advanced materials.