SEGS: Search for enriched gene sets in microarray data

[1]  Jill P. Mesirov,et al.  GSEA-P: a desktop application for Gene Set Enrichment Analysis , 2007, Bioinform..

[2]  M. Martelli,et al.  Natural killer cell alloreactivity in allogeneic hematopoietic transplantation , 2007, Current opinion in oncology.

[3]  J. Walczak,et al.  Prostate cancer: a practical approach to current management of recurrent disease. , 2007, Mayo Clinic proceedings.

[4]  P. de Paepe,et al.  Diffuse large B-cell lymphoma: a heterogeneous group of non-Hodgkin lymphomas comprising several distinct clinicopathological entities , 2007, Leukemia.

[5]  P. D. Paepe,et al.  Diffuse large B-cell lymphoma: a heterogeneous group of non-Hodgkin lymphomas comprising several distinct clinicopathological entities , 2007, Leukemia.

[6]  R. Bende,et al.  Molecular pathways in follicular lymphoma , 2007, Leukemia.

[7]  R. Storb,et al.  The immune system as a foundation for immunologic therapy and hematologic malignancies: a historical perspective. , 2006, Best practice & research. Clinical haematology.

[8]  Alex Lewin,et al.  BMC Bioinformatics BioMed Central Methodology article Grouping Gene Ontology terms to improve the assessment of gene set enrichment in microarray data , 2006 .

[9]  F. Weerkamp,et al.  Notch and Wnt signaling in T-lymphocyte development and acute lymphoblastic leukemia , 2006, Leukemia.

[10]  Thomas Lengauer,et al.  Improved scoring of functional groups from gene expression data by decorrelating GO graph structure , 2006, Bioinform..

[11]  H. Lee,et al.  Wnt/Frizzled signaling in hepatocellular carcinoma. , 2006, Frontiers in bioscience : a journal and virtual library.

[12]  Martin Vingron,et al.  An Improved Statistic for Detecting Over-Represented Gene Ontology Annotations in Gene Sets , 2006, RECOMB.

[13]  H. G. Einsiedel,et al.  Histone deacetylase inhibitors have antitumor activity in two NOD/SCID mouse models of B-cell precursor childhood acute lymphoblastic leukemia , 2006, Leukemia.

[14]  Tao Cai,et al.  Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary , 2005, Bioinform..

[15]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Purvesh Khatri,et al.  Ontological analysis of gene expression data: current tools, limitations, and open problems , 2005, Bioinform..

[17]  H. Clevers,et al.  Wnt signaling in the intestinal epithelium: from endoderm to cancer. , 2005, Genes & development.

[18]  D. Bernhard,et al.  CXCR4 chemokine receptors, histone deacetylase inhibitors and acute lymphoblastic leukemia , 2005, Leukemia & lymphoma.

[19]  Seon-Young Kim,et al.  PAGE: Parametric Analysis of Gene Set Enrichment , 2005, BMC Bioinform..

[20]  T. Speed,et al.  GOstat: find statistically overrepresented Gene Ontologies within a group of genes. , 2004, Bioinformatics.

[21]  Joaquín Dopazo,et al.  FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes , 2004, Bioinform..

[22]  G. Gordon,et al.  A diagnostic test for prostate cancer from gene expression profiling data. , 2004, The Journal of urology.

[23]  H. Auer,et al.  Tissue-Wide Expression Profiling Using cDNA Subtraction and Microarrays to Identify Tumor-Specific Genes , 2004, Cancer Research.

[24]  T. Golub,et al.  The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. , 2003, Blood.

[25]  Philip M. Long,et al.  Comment on " 'Stemness': Transcriptional Profiling of Embryonic and Adult Stem Cells" and "A Stem Cell Molecular Signature" (I) , 2003, Science.

[26]  A. Butte,et al.  Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[27]  R. Salunga,et al.  Gene expression profiles of human breast cancer progression , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[28]  P. Khatri,et al.  Global functional profiling of gene expression. , 2003, Genomics.

[29]  May D. Wang,et al.  GoMiner: a resource for biological interpretation of genomic and proteomic data , 2003, Genome Biology.

[30]  Jerry Li,et al.  Within the fold: assessing differential expression measures and reproducibility in microarray assays , 2002, Genome Biology.

[31]  John T. Dimos,et al.  A Stem Cell Molecular Signature , 2002, Science.

[32]  D. Melton,et al.  "Stemness": Transcriptional Profiling of Embryonic and Adult Stem Cells , 2002, Science.

[33]  E. Lander,et al.  Gene expression correlates of clinical prostate cancer behavior. , 2002, Cancer cell.

[34]  Todd,et al.  Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning , 2002, Nature Medicine.

[35]  Sayan Mukherjee,et al.  Molecular classification of multiple tumor types , 2001, ISMB.

[36]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[37]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[38]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[39]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[40]  E. Baráth,et al.  Fundamentals of Biostatistics. , 1992 .