Multi-objective design space exploration using genetic algorithms

In this work, we provide a technique for efficiently exploring a parameterized system-on-a-chip (SoC) architecture to find all Pareto-optimal configurations in a multi-objective design space. Globally, our approach uses a parameter dependency model of our target parameterized SoC architecture to extensively prune non-optimal subspaces. Locally, our approach applies genetic algorithms (GAs) to discover Pareto-optimal configurations within the remaining design points. The computed Pareto-optimal configurations will represent the range of performance (e.g., timing and power) tradeoffs that are obtainable by adjusting parameter values for a fixed application that is mapped on the parameterized SoC architecture. We have successfully applied our technique to explore Pareto-optimal configurations for a number of applications mapped on a parameterized SoC architecture.

[1]  Zbigniew Michalewicz,et al.  Evolutionary Computation 1 , 2018 .

[2]  Andrew B. Kahng,et al.  A hybrid multilevel/genetic approach for circuit partitioning , 1996, Proceedings of APCCAS'96 - Asia Pacific Conference on Circuits and Systems.

[3]  Pinaki Mazumder,et al.  A genetic approach to standard cell placement using meta-genetic parameter optimization , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[4]  Jörg Henkel,et al.  Fast cache and bus power estimation for parameterized system-on-a-chip design , 2000, DATE '00.

[5]  Joerg joke Heitkoetter,et al.  The hitch-hiker''s guide to evolutionary computation , 2001 .

[6]  Daniel G. Saab,et al.  Automatic test vector cultivation for sequential VLSI circuits using genetic algorithms , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[7]  David H. Albonesi,et al.  Selective cache ways: on-demand cache resource allocation , 1999, MICRO-32. Proceedings of the 32nd Annual ACM/IEEE International Symposium on Microarchitecture.

[8]  Yi-Min Jiang,et al.  Estimation of maximum power and instantaneous current using a genetic algorithm , 1997, Proceedings of CICC 97 - Custom Integrated Circuits Conference.

[9]  C. A. Coello Coello,et al.  A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques , 1999, Knowledge and Information Systems.

[10]  Mircea R. Stan,et al.  Bus-invert coding for low-power I/O , 1995, IEEE Trans. Very Large Scale Integr. Syst..

[11]  Jörg Henkel,et al.  System-level exploration for Pareto-optimal configurations in parameterized systems-on-a-chip , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).

[12]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[13]  Bill Moyer,et al.  A programmable unified cache architecture for embedded applications , 2000, CASES '00.

[14]  Ricardo E. Gonzalez,et al.  Xtensa: A Configurable and Extensible Processor , 2000, IEEE Micro.

[15]  Tomoyuki Hiroyasu,et al.  SPEA2+: Improving the Performance of the Strength Pareto Evolutionary Algorithm 2 , 2004, PPSN.

[16]  Luca Benini,et al.  Cycle-accurate simulation of energy consumption in embedded systems , 1999, DAC '99.

[17]  Andrew B. Kahng,et al.  Recent directions in netlist partitioning: a survey , 1995, Integr..

[18]  Jens Lienig,et al.  A Genetic Algorithm for Channel Routing in VLSI Circuits , 1993, Evolutionary Computation.

[19]  Elizabeth M. Rudnick,et al.  Genetic algorithms for VLSI design, layout & test automation , 1999 .

[20]  Andrew B. Kahng,et al.  Recent developments in netlist partitioning: a survey , 1995 .

[21]  Irith Pomeranz,et al.  GAFPGA: Genetic algorithm for FPGA technology mapping , 1993, Proceedings of EURO-DAC 93 and EURO-VHDL 93- European Design Automation Conference.

[22]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .