Surface and normal ensembles for surface reconstruction

The majority of the existing techniques for surface reconstruction and the closely related problem of normal reconstruction are deterministic. Their main advantages are the speed and, given a reasonably good initial input, the high quality of the reconstructed surfaces. Nevertheless, their deterministic nature may hinder them from effectively handling incomplete data with noise and outliers. An ensemble is a statistical technique which can improve the performance of deterministic algorithms by putting them into a statistics based probabilistic setting. In this paper, we study the suitability of ensembles in normal and surface reconstruction. We experimented with a widely used normal reconstruction technique [Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle W. Surface reconstruction from unorganized points. Computer Graphics 1992;71-8] and Multi-level Partitions of Unity implicits for surface reconstruction [Ohtake Y, Belyaev A, Alexa M, Turk G, Seidel H-P. Multi-level partition of unity implicits. ACM Transactions on Graphics 2003;22(3):463-70], showing that normal and surface ensembles can successfully be combined to handle noisy point sets.

[1]  William E. Lorensen,et al.  Marching cubes: a high resolution 3D surface construction algorithm , 1996 .

[2]  Chandrajit L. Bajaj,et al.  Automatic reconstruction of surfaces and scalar fields from 3D scans , 1995, SIGGRAPH.

[3]  Jie Xu,et al.  Bilateral Estimation of Vertex Normal for Point-Sampled Models , 2005, ICCSA.

[4]  Marc Levoy,et al.  Fitting smooth surfaces to dense polygon meshes , 1996, SIGGRAPH.

[5]  J. Kenney,et al.  Mathematics of statistics , 1940 .

[6]  Renato Pajarola,et al.  A simple approach for point-based object capturing and rendering , 2004, IEEE Computer Graphics and Applications.

[7]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.

[8]  Fabio Remondino,et al.  Image‐based 3D Modelling: A Review , 2006 .

[9]  Holly E. Rushmeier,et al.  The 3D Model Acquisition Pipeline , 2002, Comput. Graph. Forum.

[10]  Leonidas J. Guibas,et al.  Estimating surface normals in noisy point cloud data , 2004, Int. J. Comput. Geom. Appl..

[11]  Tamal K. Dey,et al.  Tight cocone: a water-tight surface reconstructor , 2003, SM '03.

[12]  H. Seidel,et al.  Multi-level partition of unity implicits , 2003 .

[13]  Tamal K. Dey,et al.  Eurographics Symposium on Point-based Graphics (2005) Normal Estimation for Point Clouds: a Comparison Study for a Voronoi Based Method , 2022 .

[14]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[15]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[16]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[17]  David Taniar,et al.  Computational Science and Its Applications - ICCSA 2005, International Conference, Singapore, May 9-12, 2005, Proceedings, Part I , 2005, ICCSA.

[18]  Hans-Peter Seidel,et al.  Neural mesh ensembles , 2004, Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004..

[19]  Ralph R. Martin,et al.  Algorithms for reverse engineering boundary representation models , 2001, Comput. Aided Des..

[20]  Hans-Peter Seidel,et al.  Neural meshes: surface reconstruction with a learning algorithm , 2004 .

[21]  Robert E. Schapire,et al.  The strength of weak learnability , 1990, Mach. Learn..

[22]  Paul J. Besl,et al.  Direct construction of polynomial surfaces from dense range images through region growing , 1995, TOGS.

[23]  Sunghee Choi,et al.  The power crust, unions of balls, and the medial axis transform , 2001, Comput. Geom..

[24]  Marshall W. Bern,et al.  A new Voronoi-based surface reconstruction algorithm , 1998, SIGGRAPH.

[25]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[26]  Markus H. Gross,et al.  Shape modeling with point-sampled geometry , 2003, ACM Trans. Graph..

[27]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.

[28]  Meenakshisundaram Gopi,et al.  Surface Reconstruction based on Lower Dimensional Localized Delaunay Triangulation , 2000, Comput. Graph. Forum.

[29]  Tim Weyrich,et al.  Post-processing of Scanned 3D Surface Data , 2004, PBG.

[30]  Ralph R. Martin,et al.  Constrained fitting in reverse engineering , 2002, Comput. Aided Geom. Des..

[31]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[32]  Hans-Peter Seidel,et al.  Ensembles for Surface Reconstruction , 2005 .

[33]  Frédo Durand,et al.  Normal improvement for point rendering , 2004, IEEE Computer Graphics and Applications.

[34]  Hans-Peter Seidel,et al.  Overfitting control for surface reconstruction , 2006, SGP '06.

[35]  R. Fabio From point cloud to surface the modeling and visualization problem , 2003 .

[36]  Fabio Remondino From point cloud to surface , 2003 .

[37]  Anath Fischer,et al.  Efficient surface reconstruction method for distributed CAD , 2004, Comput. Aided Des..

[38]  James F. O'Brien,et al.  Spectral surface reconstruction from noisy point clouds , 2004, SGP '04.

[39]  Samuel R. Buss,et al.  Spherical averages and applications to spherical splines and interpolation , 2001, TOGS.

[40]  Les A. Piegl,et al.  Parametrization for surface fitting in reverse engineering , 2001, Comput. Aided Des..