Theoretical design and computational screening of precursors for atomic layer deposition

Abstract An effective precursor is a prerequisite and key to the success of atomic layer deposition (ALD). Currently, the design of more effective precursors is an important aspect of the development of ALD technology. In this review, theoretical design and computational screening methods for ALD precursors are discussed. Theoretical calculations can predict many properties of precursors, such as the bond strength between the metal and the ligand, the thermolysis energy and barrier, the chelation energy, the hydrolysis energy, the formation energy, and so on. Most of these calculated data are related to the stability and reactivity of the precursor, which can be used in the design and computational screening of new ALD precursors. In addition, precursor design and screening require consideration of the ALD reaction mechanism in order to predict the true reactivity of the precursor with the surface, namely the surface reactivity of the precursor, which reflects the essence of ALD technology. Such theoretical efforts are expected to provide guidance for the design of more effective precursors and thereby lead to an improvement of ALD applications.

[1]  Yohan Park,et al.  Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. , 2011, Nature materials.

[2]  C. Murray,et al.  Effect of reaction mechanism on precursor exposure time in atomic layer deposition of silicon oxide and silicon nitride. , 2014, ACS applied materials & interfaces.

[3]  Initial reaction of silicon precursors with a varying number of dimethylamino ligands on a hydroxyl-terminated silicon (0 0 1) surface , 2013 .

[4]  M. Hitchman,et al.  Chemical Vapour Deposition: Precursors, Processes and Applications , 2008 .

[5]  T. J. Knisley,et al.  Precursors and chemistry for the atomic layer deposition of metallic first row transition metal films , 2013 .

[6]  Roy G. Gordon,et al.  Rapid Vapor Deposition of Highly Conformal Silica Nanolaminates , 2002, Science.

[7]  R. Gordon,et al.  Atomic layer deposition of transition metals , 2003, Nature materials.

[8]  N. Pinna,et al.  Carbon-nanostructures coated/decorated by atomic layer deposition: Growth and applications , 2013 .

[9]  Xingbin Yan,et al.  Engineering the field emission properties of graphene film by gas adsorbates. , 2014, Physical chemistry chemical physics : PCCP.

[10]  Aidong Li,et al.  Theoretical Understanding of the Reaction Mechanism of SiO2 Atomic Layer Deposition , 2016 .

[11]  M. Ritala,et al.  Synthesis and characterisation of cyclopentadienyl complexes of barium: precursors for atomic layer deposition of BaTiO3. , 2004, Dalton Transactions.

[12]  S. George,et al.  Surface chemistry for molecular layer deposition of organic and hybrid organic-inorganic polymers. , 2009, Accounts of chemical research.

[13]  Zhenan Bao,et al.  Selective metal deposition at graphene line defects by atomic layer deposition. , 2014, Nature communications.

[14]  S. D. Elliott,et al.  Modeling of Precursors for Atomic Layer Deposition of Magnesium and Calcium Oxide , 2013 .

[15]  Yan-Qiang Cao,et al.  Stepwise mechanism and H2O-assisted hydrolysis in atomic layer deposition of SiO2 without a catalyst , 2015, Nanoscale Research Letters.

[16]  Yan-Qiang Cao,et al.  Self-catalysis by aminosilanes and strong surface oxidation by O2 plasma in plasma-enhanced atomic layer deposition of high-quality SiO2. , 2015, Chemical communications.

[17]  V. Kessler,et al.  First principles simulation of reaction steps in the atomic layer deposition of titania: dependence of growth on Lewis acidity of titanocene precursor. , 2012, Physical chemistry chemical physics : PCCP.

[18]  S. Barry Amidinates, guanidinates and iminopyrrolidinates: Understanding precursor thermolysis to design a better ligand , 2013 .

[19]  Claire J. Carmalt,et al.  Molecular precursor approach to metal oxide and pnictide thin films , 2013 .

[20]  Y. Chabal,et al.  Precursor design and reaction mechanisms for the atomic layer deposition of metal films , 2013 .

[21]  S. George,et al.  SiO2 film growth at low temperatures by catalyzed atomic layer deposition in a viscous flow reactor , 2005 .

[22]  Byung Joon Choi,et al.  Influences of metal, non-metal precursors, and substrates on atomic layer deposition processes for the growth of selected functional electronic materials , 2013 .

[23]  Hansong Cheng,et al.  On the Mechanisms of SiO2 Thin-Film Growth by the Full Atomic Layer Deposition Process Using Bis(t-butylamino)silane on the Hydroxylated SiO2(001) Surface , 2012 .

[24]  Aidong Li,et al.  Surface Pseudorotation in Lewis-Base-Catalyzed Atomic Layer Deposition of SiO2: Static Transition State Search and Born–Oppenheimer Molecular Dynamics Simulation , 2012 .

[25]  G. Xiao,et al.  Coking- and Sintering-Resistant Palladium Catalysts Achieved Through Atomic Layer Deposition , 2012, Science.

[26]  S. George,et al.  ATOMIC LAYER CONTROLLED GROWTH OF SIO2 FILMS USING BINARY REACTION SEQUENCE CHEMISTRY , 1997 .

[27]  R. Pearlstein,et al.  Designing high performance precursors for atomic layer deposition of silicon oxide , 2015 .

[28]  J. Jur,et al.  Mechanisms and reactions during atomic layer deposition on polymers , 2013 .

[29]  S. D. Elliott,et al.  Improving ALD growth rate via ligand basicity: Quantum chemical calculations on lanthanum precursors , 2007 .

[30]  Mikko Ritala,et al.  Precursors as enablers of ALD technology: Contributions from University of Helsinki , 2013 .

[31]  A. Sherman Atomic layer deposition for nanotechnology , 2008 .

[32]  J. Hupp,et al.  Mechanism for zirconium oxide atomic layer deposition using bis(methylcyclopentadienyl)methoxymethyl zirconium. , 2007 .

[33]  A. Zydor,et al.  Thermal stability of precursors for atomic layer deposition of TiO2, ZrO2, and HfO2: an ab initio study of alpha-hydrogen abstraction in bis-cyclopentadienyl dimethyl complexes. , 2010, The journal of physical chemistry. A.

[34]  S. George,et al.  Atomic Layer Growth of SiO2 on Si(100) using SiCl4 and H2O in a Binary Reaction Sequence , 1995, Microphysics of Surfaces Nanoscale Processing.

[35]  K. Kukli,et al.  Atomic layer deposition of oxide thin films with metal alkoxides as oxygen sources , 2000, Science.

[36]  A. Zydor,et al.  TiCp*(OMe)3 versus Ti(OMe)4 in atomic layer deposition of TiO2 with water--ab initio modelling of atomic layer deposition surface reactions. , 2011, Journal of nanoscience and nanotechnology.

[37]  Arthur D. Sherman,et al.  Atomic Layer Deposition: Principles, Characteristics, and Nanotechnology Applications , 2013 .

[38]  C. Carmalt,et al.  Aerosol assisted chemical vapor deposition of In2O3 films from Me3In and donor functionalized alcohols. , 2007, Inorganic chemistry.

[39]  C. Hwang Atomic Layer Deposition for Semiconductors , 2013 .

[40]  Jin-seong Park,et al.  Synthesis and characterization of volatile, thermally stable, reactive transition metal amidinates. , 2003, Inorganic chemistry.

[41]  Mikko Ritala,et al.  Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends , 2013 .

[42]  J. S. Price,et al.  Metal ALD and pulsed CVD: Fundamental reactions and links with solution chemistry , 2013 .

[43]  N. Dasgupta,et al.  Atomic layer deposition of metal sulfide materials. , 2015, Accounts of chemical research.

[44]  R. Gordon,et al.  On the relative stability of cobalt- and nickel-based amidinate complexes against β-migration , 2009 .

[45]  Ji-Su Kim,et al.  Effect of amino ligand size of Si precursors on initial reaction with an –OH-terminated Si(001) surface for atomic layer deposition , 2014 .

[46]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[47]  N. Tsuji,et al.  Temperature dependence of SiO2 film growth with plasma-enhanced atomic layer deposition , 2012 .

[48]  M. Uehara,et al.  Computational Method for Efficient Screening of Metal Precursors for Nanomaterial Syntheses , 2009 .

[49]  Y. Lei,et al.  Toward atomically-precise synthesis of supported bimetallic nanoparticles using atomic layer deposition , 2014, Nature Communications.

[50]  H. Osten,et al.  Atomic Layer Deposition of Gd2O3 and Dy2O3: A Study of the ALD Characteristics and Structural and Electrical Properties , 2012 .

[51]  Steven M. George,et al.  SiO2 Atomic Layer Deposition Using Tris(dimethylamino)silane and Hydrogen Peroxide Studied by in Situ Transmission FTIR Spectroscopy , 2009 .

[52]  C. Murray,et al.  Density functional theory predictions of the composition of atomic layer deposition-grown ternary oxides. , 2013, ACS applied materials & interfaces.

[53]  Klaus,et al.  Growth of SiO2 at room temperature with the use of catalyzed sequential half-reactions , 1997, Science.

[54]  Hansong Cheng,et al.  Effect of Al Electronic Configuration on the SiO2 Thin Film Growth via Catalytic Self-Assembling Deposition , 2013 .

[55]  Yeong-Cheol Kim,et al.  Adsorption and surface reaction of bis-diethylaminosilane as a Si precursor on an OH-terminated Si (0 0 1) surface , 2012 .

[56]  F. Zaera Mechanisms of surface reactions in thin solid film chemical deposition processes , 2013 .

[57]  Kirk Scott Cuthill,et al.  Impact of Aminosilane Precursor Structure on Silicon Oxides by Atomic Layer Deposition , 2011 .

[58]  Steven M. George,et al.  Atomic layer controlled deposition of SiO2 and Al2O3 using ABAB… binary reaction sequence chemistry , 1994 .

[59]  Mato Knez,et al.  Atomic layer deposition of nanostructured materials , 2012 .

[60]  D. Cahill,et al.  Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates , 2004, Science.

[61]  W. Kessels,et al.  Role of Surface Termination in Atomic Layer Deposition of Silicon Nitride. , 2015, The journal of physical chemistry letters.

[62]  S. George,et al.  Mechanism of Pyridine-Catalyzed SiO2 Atomic Layer Deposition Studied by Fourier Transform Infrared Spectroscopy , 2007 .

[63]  A. Devi ‘Old Chemistries’ for new applications: Perspectives for development of precursors for MOCVD and ALD applications , 2013 .

[64]  Guoyong Fang,et al.  Rapid atomic layer deposition of silica nanolaminates: synergistic catalysis of Lewis/Brønsted acid sites and interfacial interactions. , 2013, Nanoscale.

[65]  Energy-enhanced atomic layer deposition for more process and precursor versatility , 2013 .

[66]  Steven M. George,et al.  Atomic layer deposition of SiO2 at room temperature using NH3-catalyzed sequential surface reactions , 2000 .

[67]  F. Prinz,et al.  Atomic layer deposition and chemical vapor deposition precursor selection method application to strontium and barium precursors. , 2007, The journal of physical chemistry. A.

[68]  Se Stephen Potts,et al.  Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges , 2011 .

[69]  Chenggang Zhou,et al.  On the Dissociative Chemisorption of Tris(dimethylamino)silane on Hydroxylated SiO2(001) Surface , 2009 .