Generating the Bézier points of a -spline curve

Abstract We present an efficient algorithm for computing the Bezier points of a generalized cubic β-spline curve and show the connection with multiple knot insertion. We also consider the inverse problem of determining the β-spline vertices of a composite G 2 Bezier curve. Finally, we briefly discuss how to construct the Bezier net of a tensor product β-spline surface.

[1]  Wolfgang Böhm,et al.  A survey of curve and surface methods in CAGD , 1984, Comput. Aided Geom. Des..

[2]  W. Böhm,et al.  Generating the Bézier points of B-spline curves and surfaces , 1981 .

[3]  Wolfgang Böhm Rational geometric splines , 1987, Comput. Aided Geom. Des..

[4]  P. Sablonnière Spline and Bézier polygons associated with a polynomial spline curve , 1978 .

[5]  Tim N. T. Goodman,et al.  Manipulating Shape and Producing Geometuic Contnuity in ß-Spline Curves , 1986, IEEE Computer Graphics and Applications.

[6]  C. D. Boor,et al.  On Calculating B-splines , 1972 .

[7]  Tony DeRose,et al.  The Beta2-spline: A Special Case of the Beta-spline Curve and Surface Representation , 1983, IEEE Computer Graphics and Applications.

[8]  Richard F. Riesenfeld,et al.  A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Tony DeRose,et al.  Geometric continuity, shape parameters, and geometric constructions for Catmull-Rom splines , 1988, TOGS.

[10]  G. Farin Visually C2 cubic splines , 1982 .

[11]  B. Barsky Arbitrary Subdivision of Bezier Curves , 1985 .

[12]  Wolfgang Böhm Curvature continuous curves and surfaces , 1985, Comput. Aided Geom. Des..

[13]  A. Derose Geometric continuity: a parametrization independent measure of continuity for computer aided geometric design (curves, surfaces, splines) , 1985 .

[14]  T. Goodman Properties of ?-splines , 1985 .

[15]  B. Barsky The beta-spline: a local representation based on shape parameters and fundamental geometric measures , 1981 .

[16]  Richard H. Bartels,et al.  An introduction to the use of splines in computer graphics and geometric modeling , 1986 .