Lecture Notes on Solving Large Scale Eigenvalue Problems
暂无分享,去创建一个
[1] Merico E. Argentati,et al. Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX) in hypre and PETSc , 2007, SIAM J. Sci. Comput..
[2] Gene H. Golub,et al. Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.
[3] M. Rozložník. Numerics of Gram-Schmidt orthogonalization , 2007 .
[4] U. Hetmaniuk,et al. A comparison of eigensolvers for large‐scale 3D modal analysis using AMG‐preconditioned iterative methods , 2005 .
[5] Heinrich Voss,et al. A Jacobi-Davidson Method for Nonlinear Eigenproblems , 2004, International Conference on Computational Science.
[6] G. W. Stewart,et al. A Krylov-Schur Algorithm for Large Eigenproblems , 2001, SIAM J. Matrix Anal. Appl..
[7] J. Cullum,et al. Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Vol. 1 , 2002 .
[8] Andrew V. Knyazev,et al. Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..
[9] G. Stewart. Matrix Algorithms, Volume II: Eigensystems , 2001 .
[10] A. Sameh,et al. The trace minimization method for the symmetric generalized eigenvalue problem , 2000 .
[11] Kesheng Wu,et al. Thick-Restart Lanczos Method for Large Symmetric Eigenvalue Problems , 2000, SIAM J. Matrix Anal. Appl..
[12] Jack Dongarra,et al. Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.
[13] Gerard L. G. Sleijpen,et al. Alternative correction equations in the Jacobi-Davidson method , 1999, Numer. Linear Algebra Appl..
[14] Gerard L. G. Sleijpen,et al. Jacobi-Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils , 1998, SIAM J. Sci. Comput..
[15] Chao Yang,et al. ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.
[16] Y. Feng,et al. CONJUGATE GRADIENT METHODS FOR SOLVING THE SMALLEST EIGENPAIR OF LARGE SYMMETRIC EIGENVALUE PROBLEMS , 1996 .
[17] Gerard L. G. Sleijpen,et al. A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..
[18] S. Eisenstat,et al. A Stable and Efficient Algorithm for the Rank-One Modification of the Symmetric Eigenproblem , 1994, SIAM J. Matrix Anal. Appl..
[19] J. Rodriguez,et al. Problem (2) , 1994 .
[20] B. Liu,et al. [Effect of BN52021 on platelet activating factor induced aggregation of psoriatic polymorphonuclear neutrophils]. , 1994, Zhonghua yi xue za zhi.
[21] D. Calvetti,et al. AN IMPLICITLY RESTARTED LANCZOS METHOD FOR LARGE SYMMETRIC EIGENVALUE PROBLEMS , 1994 .
[22] J. G. Lewis,et al. A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems , 1994, SIAM J. Matrix Anal. Appl..
[23] Richard Barrett,et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.
[24] Ren-Cang Li. Solving secular equations stably and efficiently , 1993 .
[25] Danny C. Sorensen,et al. Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..
[26] D. Sorensen,et al. On the orthogonality of eigenvectors computed by divide-and-conquer techniques , 1991 .
[27] R. Morgan. Davidson's method and preconditioning for generalized eigenvalue problems , 1990 .
[28] Christopher D. Beatie,et al. Localization criteria and containment for Rayleigh quotient iteration , 1989 .
[29] D. Szyld. Criteria for Combining Inverse and Rayleigh Quotient Iteration , 1988 .
[30] Jack J. Dongarra,et al. An extended set of FORTRAN basic linear algebra subprograms , 1988, TOMS.
[31] Jack J. Dongarra,et al. A proposal for a set of level 3 basic linear algebra subprograms , 1987, SGNM.
[32] Ahmed H. Sameh,et al. Trace Minimization Algorithm for the Generalized Eigenvalue Problem , 1982, PPSC.
[33] Jack Dongarra,et al. LINPACK Users' Guide , 1987 .
[34] H. Schwarz. Rayleigh-Quotient-Minimierung mit Vorkonditionierung , 1987 .
[35] R. Morgan,et al. Generalizations of Davidson's method for computing eigenvalues of sparse symmetric matrices , 1986 .
[36] Jack J. Dongarra,et al. A fully parallel algorithm for the symmetric eigenvalue problem , 1985, PPSC.
[37] J. Cullum,et al. Lanczos algorithms for large symmetric eigenvalue computations , 1985 .
[38] H. Simon. Analysis of the symmetric Lanczos algorithm with reorthogonalization methods , 1984 .
[39] V. A. Barker,et al. Finite element solution of boundary value problems , 1984 .
[40] H. Schwarz. Methode der finiten Elemente , 1984 .
[41] H. Simon. The Lanczos algorithm with partial reorthogonalization , 1984 .
[42] G. Golub. Matrix computations , 1983 .
[43] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[44] D. Longsine,et al. Simultaneous rayleigh-quotient minimization methods for Ax=λBx , 1980 .
[45] Y. Saad. On the Rates of Convergence of the Lanczos and the Block-Lanczos Methods , 1980 .
[46] J. Cuppen. A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .
[47] Charles L. Lawson,et al. Basic Linear Algebra Subprograms for Fortran Usage , 1979, TOMS.
[48] Jack J. Dongarra,et al. Matrix Eigensystem Routines — EISPACK Guide Extension , 1977, Lecture Notes in Computer Science.
[49] E. Davidson. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .
[50] Ronald L. Graham,et al. Problem #7 , 1974, SIGS.
[51] Axel Ruhe. ALGORITHMS FOR THE NONLINEAR EIGENVALUE PROBLEM , 1973 .
[52] William G. Poole,et al. A geometric theory for the QR, LU and power iterations. , 1973 .
[53] H. Rutishauser. Simultaneous iteration method for symmetric matrices , 1970 .
[54] N. Meyers,et al. H = W. , 1964, Proceedings of the National Academy of Sciences of the United States of America.
[55] P. P. Starling. The numerical solution of Laplace's equation , 1963 .
[56] D. Faddeev,et al. Computational Methods of Linear Algebra. , 1966, The Mathematical Gazette.
[57] W. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .
[58] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[59] C. Jacobi. Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vorkommenden Gleichungen numerisch aufzulösen*). , 2022 .