Fractional-step methods and finite elements with symmetric stabilization for the transient Oseen problem

This paper deals with the spatial and time discretization of the transient Oseen equations. Finite elements with symmetric stabilization in space are combined with several time-stepping schemes (monolithic and fractional-step). Quasi-optimal (in space) and optimal (in time) error estimates are established for smooth solutions in all flow regimes. We first analyze monolithic time discretizations using the Backward Differentation Formulas of order 1 and 2 (BDF1 and BDF2). We derive a new estimate on the time-average of the pressure error featuring the same robustness with respect to the Reynolds number as the velocity estimate. Then, we analyze fractional-step pressure-projection methods using BDF1. The stabilization of velocities and pressures can be treated either implicitly or explicitly. Numerical results illustrate the main theoretical findings.

[1]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[2]  Ekkehard Ramm,et al.  Large eddy simulation of turbulent incompressible flows by a three‐level finite element method , 2005 .

[3]  P. Hansbo,et al.  Edge stabilization for Galerkin approximations of convection?diffusion?reaction problems , 2004 .

[4]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[5]  Jean-Luc Guermond,et al.  Weighting the Edge Stabilization , 2013, SIAM J. Numer. Anal..

[6]  T. Chacón Rebollo,et al.  Numerical Analysis of Penalty Stabilized Finite Element Discretizations of Evolution Navier–Stokes Equations , 2015, J. Sci. Comput..

[7]  Mary F. Wheeler,et al.  A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems , 2004, Math. Comput..

[8]  Miguel A. Fernández,et al.  Continuous interior penalty finite element method for the time-dependent Navier–Stokes equations: space discretization and convergence , 2007, Numerische Mathematik.

[9]  R. Rannacher,et al.  Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .

[10]  Volker John An assessment of two models for the subgrid scale tensor in the rational LES model , 2005 .

[11]  Marcel Lesieur,et al.  The mixing layer and its coherence examined from the point of view of two-dimensional turbulence , 1988, Journal of Fluid Mechanics.

[12]  Miguel A. Fernández,et al.  Continuous Interior Penalty Finite Element Method for Oseen's Equations , 2006, SIAM J. Numer. Anal..

[13]  Jean-Luc Guermond,et al.  Discontinuous Galerkin Methods for Friedrichs' Systems. I. General theory , 2006, SIAM J. Numer. Anal..

[14]  Erik Burman,et al.  Interior penalty variational multiscale method for the incompressible Navier-Stokes equation: Monitoring artificial dissipation , 2007 .

[15]  J. Guermond,et al.  DISCONTINUOUS GALERKIN METHODS FOR FRIEDRICHS , 2006 .

[16]  Alexandre Ern,et al.  Discrete functional analysis tools for Discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations , 2010, Math. Comput..

[17]  Roland Becker,et al.  A Two-Level Stabilization Scheme for the Navier-Stokes Equations , 2004 .

[18]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[19]  Jean-Luc Guermond,et al.  Discontinuous Galerkin Methods for Friedrichs’ Systems , 2006 .

[20]  Jean-Luc Guermond,et al.  Subgrid stabilized projection method for 2D unsteady flows at high Reynolds numbers , 2006 .

[21]  Santiago Badia,et al.  On some pressure segregation methods of fractional-step type for the finite element approximation of incompressible flow problems , 2006 .

[22]  Erik Burman,et al.  Stabilized finite element methods for the generalized Oseen problem , 2007 .

[23]  Juhani Pitkäranta,et al.  An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .

[24]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[25]  Ernst Heinrich Hirschel,et al.  Flow Simulation with High-Performance Computers II , 1996 .

[26]  R. Codina Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods , 2000 .

[27]  A. Prohl Projection and quasi-compressibility methods for solving the incompressible navier-stokes equations , 1997 .

[28]  Miguel A. Fernández,et al.  Galerkin Finite Element Methods with Symmetric Pressure Stabilization for the Transient Stokes Equations: Stability and Convergence Analysis , 2008, SIAM J. Numer. Anal..

[29]  J. Guermond Stabilization of Galerkin approximations of transport equations by subgrid modelling , 1999 .

[30]  Jean-Luc Guermond,et al.  On the approximation of the unsteady Navier–Stokes equations by finite element projection methods , 1998, Numerische Mathematik.