Fractional-step methods and finite elements with symmetric stabilization for the transient Oseen problem
暂无分享,去创建一个
Alexandre Ern | Erik Burman | Miguel Angel Fernández | Miguel A. Fernández | A. Ern | E. Burman | M. Fernández
[1] A. Ern,et al. Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .
[2] Ekkehard Ramm,et al. Large eddy simulation of turbulent incompressible flows by a three‐level finite element method , 2005 .
[3] P. Hansbo,et al. Edge stabilization for Galerkin approximations of convection?diffusion?reaction problems , 2004 .
[4] Claes Johnson,et al. Finite element methods for linear hyperbolic problems , 1984 .
[5] Jean-Luc Guermond,et al. Weighting the Edge Stabilization , 2013, SIAM J. Numer. Anal..
[6] T. Chacón Rebollo,et al. Numerical Analysis of Penalty Stabilized Finite Element Discretizations of Evolution Navier–Stokes Equations , 2015, J. Sci. Comput..
[7] Mary F. Wheeler,et al. A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems , 2004, Math. Comput..
[8] Miguel A. Fernández,et al. Continuous interior penalty finite element method for the time-dependent Navier–Stokes equations: space discretization and convergence , 2007, Numerische Mathematik.
[9] R. Rannacher,et al. Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .
[10] Volker John. An assessment of two models for the subgrid scale tensor in the rational LES model , 2005 .
[11] Marcel Lesieur,et al. The mixing layer and its coherence examined from the point of view of two-dimensional turbulence , 1988, Journal of Fluid Mechanics.
[12] Miguel A. Fernández,et al. Continuous Interior Penalty Finite Element Method for Oseen's Equations , 2006, SIAM J. Numer. Anal..
[13] Jean-Luc Guermond,et al. Discontinuous Galerkin Methods for Friedrichs' Systems. I. General theory , 2006, SIAM J. Numer. Anal..
[14] Erik Burman,et al. Interior penalty variational multiscale method for the incompressible Navier-Stokes equation: Monitoring artificial dissipation , 2007 .
[15] J. Guermond,et al. DISCONTINUOUS GALERKIN METHODS FOR FRIEDRICHS , 2006 .
[16] Alexandre Ern,et al. Discrete functional analysis tools for Discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations , 2010, Math. Comput..
[17] Roland Becker,et al. A Two-Level Stabilization Scheme for the Navier-Stokes Equations , 2004 .
[18] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[19] Jean-Luc Guermond,et al. Discontinuous Galerkin Methods for Friedrichs’ Systems , 2006 .
[20] Jean-Luc Guermond,et al. Subgrid stabilized projection method for 2D unsteady flows at high Reynolds numbers , 2006 .
[21] Santiago Badia,et al. On some pressure segregation methods of fractional-step type for the finite element approximation of incompressible flow problems , 2006 .
[22] Erik Burman,et al. Stabilized finite element methods for the generalized Oseen problem , 2007 .
[23] Juhani Pitkäranta,et al. An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .
[24] Jie Shen,et al. An overview of projection methods for incompressible flows , 2006 .
[25] Ernst Heinrich Hirschel,et al. Flow Simulation with High-Performance Computers II , 1996 .
[26] R. Codina. Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods , 2000 .
[27] A. Prohl. Projection and quasi-compressibility methods for solving the incompressible navier-stokes equations , 1997 .
[28] Miguel A. Fernández,et al. Galerkin Finite Element Methods with Symmetric Pressure Stabilization for the Transient Stokes Equations: Stability and Convergence Analysis , 2008, SIAM J. Numer. Anal..
[29] J. Guermond. Stabilization of Galerkin approximations of transport equations by subgrid modelling , 1999 .
[30] Jean-Luc Guermond,et al. On the approximation of the unsteady Navier–Stokes equations by finite element projection methods , 1998, Numerische Mathematik.