Generic Bound Coherence under Strictly Incoherent Operations.

We compute analytically the maximal rates of distillation of quantum coherence under strictly incoherent operations (SIO) and physically incoherent operations (PIO), showing that they coincide for all states, and providing a complete description of the phenomenon of bound coherence. In particular, we establish a simple, analytically computable necessary and sufficient criterion for the asymptotic distillability under SIO and PIO. We use this result to show that almost every quantum state is undistillable-only pure states as well as states whose density matrix contains a rank-one submatrix allow for coherence distillation under SIO or PIO, while every other quantum state exhibits bound coherence. This demonstrates the fundamental operational limitations of SIO and PIO in the resource theory of quantum coherence. We show that the fidelity of distillation of a single bit of coherence under SIO can be efficiently computed as a semidefinite program, and investigate the generalization of this result to provide an understanding of asymptotically achievable distillation fidelity.

[1]  Salman Beigi,et al.  A New Quantum Data Processing Inequality , 2012, ArXiv.

[2]  Gerardo Adesso,et al.  Probabilistic Distillation of Quantum Coherence. , 2018, Physical review letters.

[3]  H. Hirschfeld A Connection between Correlation and Contingency , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  J. Cirac,et al.  Characterization of Gaussian operations and distillation of Gaussian states , 2002, quant-ph/0204085.

[5]  B. M. Fulk MATH , 1992 .

[6]  Alexander Streltsov,et al.  Genuine quantum coherence , 2015, 1511.08346.

[7]  M. N. Bera,et al.  Entanglement and Coherence in Quantum State Merging. , 2016, Physical review letters.

[8]  Eric Chitambar,et al.  Critical Examination of Incoherent Operations and a Physically Consistent Resource Theory of Quantum Coherence. , 2016, Physical review letters.

[9]  G. Gour,et al.  Comparison of incoherent operations and measures of coherence , 2016 .

[10]  Gerardo Adesso,et al.  Converting multilevel nonclassicality into genuine multipartite entanglement , 2017, 1704.04153.

[11]  Ludovico Lami,et al.  Nonasymptotic assisted distillation of quantum coherence , 2018, Physical Review A.

[12]  R. Spekkens,et al.  How to quantify coherence: Distinguishing speakable and unspeakable notions , 2016, 1602.08049.

[13]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[14]  A. Winter,et al.  Resource theory of coherence: Beyond states , 2017, 1704.03710.

[15]  Seth Lloyd,et al.  Resource Destroying Maps. , 2016, Physical review letters.

[16]  Jens Eisert,et al.  Structure of the Resource Theory of Quantum Coherence. , 2017, Physical review letters.

[17]  Xin Wang,et al.  Using and reusing coherence to realize quantum processes , 2018, Quantum.

[18]  E. Chitambar Dephasing-covariant operations enable asymptotic reversibility of quantum resources , 2017, 1711.10606.

[19]  H. Witsenhausen ON SEQUENCES OF PAIRS OF DEPENDENT RANDOM VARIABLES , 1975 .

[20]  Salman Beigi,et al.  $\Phi$ -Entropic Measures of Correlation , 2016, IEEE Transactions on Information Theory.

[21]  V. Vedral,et al.  Quantum processes which do not use coherence , 2015, 1512.02085.

[22]  Xiaofei Qi,et al.  Coherence measures and optimal conversion for coherent states , 2015, Quantum Inf. Comput..

[23]  Robert W. Spekkens,et al.  A mathematical theory of resources , 2014, Inf. Comput..

[24]  H. Gebelein Das statistische Problem der Korrelation als Variations‐ und Eigenwertproblem und sein Zusammenhang mit der Ausgleichsrechnung , 1941 .

[25]  A. Winter,et al.  Operational Resource Theory of Coherence. , 2015, Physical review letters.

[26]  M. Horodecki,et al.  QUANTUMNESS IN THE CONTEXT OF) RESOURCE THEORIES , 2012, 1209.2162.

[27]  Salman Beigi,et al.  Impossibility of Local State Transformation via Hypercontractivity , 2013, ArXiv.

[28]  Xiongfeng Ma,et al.  One-Shot Coherence Dilution. , 2017, Physical review letters.

[29]  G. Adesso,et al.  One-Shot Coherence Distillation. , 2017, Physical review letters.

[30]  M. Plenio,et al.  Colloquium: quantum coherence as a resource , 2016, 1609.02439.

[31]  Gerardo Adesso,et al.  Gaussian quantum resource theories , 2018, Physical Review A.

[32]  Amin Gohari,et al.  Monotone Measures for Non-Local Correlations , 2014, IEEE Transactions on Information Theory.

[33]  Xiongfeng Ma,et al.  Intrinsic randomness as a measure of quantum coherence , 2015, 1505.04032.

[34]  Andreas Winter,et al.  Interferometric visibility and coherence , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[35]  Gerardo Adesso,et al.  Certification and Quantification of Multilevel Quantum Coherence , 2017, Physical Review X.

[36]  Seungbeom Chin,et al.  Coherence number as a discrete quantum resource , 2017, 1702.03219.

[37]  Thomas Theurer,et al.  Of Local Operations and Physical Wires , 2018, Physical Review X.

[38]  M. Plenio,et al.  Quantifying coherence. , 2013, Physical review letters.