Stabilizing a Gimbal Platform using Self-Tuning Fuzzy PID Controller

The aim of the inertial stabilization system is to stabilize the sensor’s line of sight (LOS) toward a target while is isolating the sensor against the disturbances which are caused by the operating environment. The purpose which this paper is following is a model of control servo system for an inertially stabilized gimbal mechanism to improve the performance of system which is using only PID controller by finding a way to tune the PID gains online, for this purpose a self-tuning Fuzzy PID type controller is used. First the relationships that governs gimbals torque will be derived from Newton’s law under consideration of the dynamic mass unbalance and base angular motion. The next step is construction of stabilization loop through designing the proposed self-tuning Fuzzy-PID controller. For simulation and investigate the system performance in different cases of controller, the Matlab/Simulink is used and Based on different performance criteria a comparison study is made. Based on the results in different conditions on proposed controller the system performance is improved. The simulation result shows improvement on transient and the steady-state performance.