Sensitivity studies of dust ice nuclei effect on cirrus clouds with the Community Atmosphere Model CAM5

Abstract. In this study the effect of dust aerosol on upper tropospheric cirrus clouds through heterogeneous ice nucleation is investigated in the Community Atmospheric Model version 5 (CAM5) with two ice nucleation parameterizations. Both parameterizations consider homogeneous and heterogeneous nucleation and the competition between the two mechanisms in cirrus clouds, but differ significantly in the number concentration of heterogeneous ice nuclei (IN) from dust. Heterogeneous nucleation on dust aerosol reduces the occurrence frequency of homogeneous nucleation and thus the ice crystal number concentration in the Northern Hemisphere (NH) cirrus clouds compared to simulations with pure homogeneous nucleation. Global and annual mean shortwave and longwave cloud forcing are reduced by up to 2.0 ± 0.1 W m−2 (1σ uncertainty) and 2.4 ± 0.1 W m−2, respectively due to the presence of dust IN, with the net cloud forcing change of −0.40 ± 0.20 W m−2. Comparison of model simulations with in situ aircraft data obtained in NH mid-latitudes suggests that homogeneous ice nucleation may play an important role in the ice nucleation at these regions with temperatures of 205–230 K. However, simulations overestimate observed ice crystal number concentrations in the tropical tropopause regions with temperatures of 190–205 K, and overestimate the frequency of occurrence of high ice crystal number concentration (> 200 L−1) and underestimate the frequency of low ice crystal number concentration (

[1]  A. Mangold,et al.  Ice supersaturations and cirrus cloud crystal numbers , 2008 .

[2]  V. Ramaswamy,et al.  Geophysical Fluid Dynamics Laboratory general circulation model investigation of the indirect radiative effects of anthropogenic sulfate aerosol , 2005 .

[3]  M. Schnaiter,et al.  Supplementary information for ‘ Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions ’ , 2010 .

[4]  Sonia M. Kreidenweis,et al.  Can Ice-Nucleating Aerosols Affect Arctic Seasonal Climate? , 2007 .

[5]  E. Bigg The supercooling of water , 1953 .

[6]  M. McCormick,et al.  A 6‐year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985–1990) , 1996 .

[7]  A. Nenes,et al.  Dynamical states of low temperature cirrus , 2011 .

[8]  U. Lohmann,et al.  A parameterization of cirrus cloud formation: Homogeneous freezing of supercooled aerosols , 2002 .

[9]  K. Gierens,et al.  Modelling of cirrus clouds – Part 1b: Structuring cirrus clouds by dynamics , 2009 .

[10]  Klaus Gierens,et al.  A distribution law for relative humidity in the upper troposphere and lower stratosphere derived from three years of MOZAIC measurements , 1999 .

[11]  Qiang Fu,et al.  Mean radiative energy balance and vertical mass fluxes in the equatorial upper troposphere and lower stratosphere , 2005 .

[12]  W. Collins,et al.  The Community Climate System Model Version 3 (CCSM3) , 2006 .

[13]  Andrew Gettelman,et al.  The Global Distribution of Supersaturation in the Upper Troposphere from the Atmospheric Infrared Sounder , 2006 .

[14]  U. Lohmann,et al.  Cirrus cloud formation and ice supersaturated regions in a global climate model , 2008 .

[15]  Z. Levin,et al.  Parameterizing ice nucleation rates using contact angle and activation energy derived from laboratory data , 2008 .

[16]  R. Neale,et al.  The Impact of Convection on ENSO: From a Delayed Oscillator to a Series of Events , 2008 .

[17]  S. Klein,et al.  Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model , 2010 .

[18]  S. Massie,et al.  Transport of water vapor in the tropical tropopause layer , 2002 .

[19]  Robert Wood,et al.  Ice Particle Interarrival Times Measured with a Fast FSSP , 2003 .

[20]  D. M. Murphy,et al.  Measurements of the concentration and composition of nuclei for cirrus formation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[21]  K. Froyd,et al.  Aerosol composition of the tropical upper troposphere , 2009 .

[22]  D. M. Murphy,et al.  Single Particle Measurements of the Chemical Composition of Cirrus Ice Residue , 2004 .

[23]  Athanasios Nenes,et al.  Sensitivity of the global distribution of cirrus ice crystal concentration to heterogeneous freezing , 2010 .

[24]  L. Donner,et al.  Nucleation processes in deep convection simulated by a cloud-system-resolving model with double-moment bulk microphysics , 2007 .

[25]  I. Zawadzki,et al.  Biogenic and anthropogenic sources of ice-forming nuclei : A review , 1997 .

[26]  B. Kärcher,et al.  A cirrus cloud scheme for general circulation models , 2008 .

[27]  S. Ghan,et al.  A New Two-Moment Bulk Stratiform Cloud Microphysics Scheme in the Community Atmosphere Model, Version 3 (CAM3). Part II: Single-Column and Global Results , 2008 .

[28]  A. Heymsfield On measurements of small ice particles in clouds , 2007 .

[29]  W. Cooper,et al.  Ice Initiation in Natural Clouds , 1986 .

[30]  A. Korolev,et al.  Relative Humidity in Liquid, Mixed-Phase, and Ice Clouds , 2006 .

[31]  Johannes Hendricks,et al.  Physically based parameterization of cirrus cloud formation for use in global atmospheric models , 2006 .

[32]  W. Cotton,et al.  Parameterization and Impact of Ice initiation Processes Relevant to Numerical Model Simulations of Cirrus Clouds. , 1994 .

[33]  M. Freer,et al.  Importance of small ice crystals to cirrus properties: Observations from the Tropical Warm Pool International Cloud Experiment (TWP‐ICE) , 2007 .

[34]  B. Barkstrom,et al.  Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment , 1996 .

[35]  K. Liou Influence of Cirrus Clouds on Weather and Climate Processes: A Global Perspective , 1986 .

[36]  C. Bretherton,et al.  A New Moist Turbulence Parameterization in the Community Atmosphere Model , 2009 .

[37]  J. Curry,et al.  Assessment of some parameterizations of heterogeneous ice nucleation in cloud and climate models , 2010 .

[38]  U. Lohmann,et al.  Freezing thresholds and cirrus cloud formation mechanisms inferred from in situ measurements of relative humidity , 2003 .

[39]  J. Curry,et al.  A new theory of heterogeneous ice nucleation for application in cloud and climate models , 2000 .

[40]  Steven Platnick,et al.  Interactive comment on “On the importance of small ice crystals in tropical anvil cirrus” by E. J. Jensen et al , 2009 .

[41]  U. Lohmann,et al.  Solid Ammonium Sulfate Aerosols as Ice Nuclei: A Pathway for Cirrus Cloud Formation , 2006, Science.

[42]  R. Lawson Effects of ice particles shattering on the 2D-S probe , 2011 .

[43]  Ulrike Lohmann,et al.  Influence of cirrus cloud radiative forcing on climate and climate sensitivity in a general circulation model , 1995 .

[44]  U. Lohmann,et al.  A Parameterization of cirrus cloud formation: Homogeneous freezing including effects of aerosol size , 2002 .

[45]  W. Collins,et al.  Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models , 2008 .

[46]  Paul J. DeMott,et al.  Insights into the role of soot aerosols in cirrus cloud formation , 2007 .

[47]  Joyce E. Penner,et al.  Ice nucleation parameterization for global models , 2005 .

[48]  David S. Lee,et al.  Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application , 2010 .

[49]  J. Slingo The Development and Verification of A Cloud Prediction Scheme For the Ecmwf Model , 2007 .

[50]  B. Luo,et al.  Water activity as the determinant for homogeneous ice nucleation in aqueous solutions , 2000, Nature.

[51]  A. Nenes,et al.  Parameterizing the competition between homogeneous and heterogeneous freezing in cirrus cloud formation – monodisperse ice nuclei , 2009 .

[52]  A. Nenes,et al.  Parameterizing the competition between homogeneous and heterogeneous freezing in ice cloud formation – polydisperse ice nuclei , 2009 .

[53]  W. Menzel,et al.  Eight Years of High Cloud Statistics Using HIRS , 1999 .

[54]  W. Collins,et al.  Description of the NCAR Community Atmosphere Model (CAM 3.0) , 2004 .

[55]  V. Ramanathan,et al.  Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño , 1991, Nature.

[56]  C. Bretherton,et al.  The University of Washington Shallow Convection and Moist Turbulence Schemes and Their Impact on Climate Simulations with the Community Atmosphere Model , 2009 .

[57]  K. C. Young The Role of Contact Nucleation in Ice Phase Initiation in Clouds , 1974 .

[58]  William J. Collins,et al.  Toward a minimal representation of aerosol direct and indirect effects: model description and evaluation , 2011 .

[59]  J. Curry,et al.  The theory of ice nucleation by heterogeneous freezing of deliquescent mixed CCN. Part I: Critical radius, energy, and nucleation rate , 2004 .

[60]  S. Kreidenweis,et al.  Laboratory studies of ice nucleation by aerosol particles in upper tropospheric conditions , 2001 .

[61]  R. Lawson,et al.  The 2D-S (Stereo) Probe: Design and Preliminary Tests of a New Airborne, High-Speed, High-Resolution Particle Imaging Probe , 2006 .

[62]  C. Zender,et al.  Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology , 2003 .

[63]  Peter Spichtinger,et al.  When Dry Air Is Too Humid , 2006, Science.

[64]  E. Browell,et al.  The impact of subvisible cirrus clouds near the tropical tropopause on stratospheric water vapor , 1998 .

[65]  S. Kreidenweis,et al.  The role of heterogeneous freezing nucleation in upper tropospheric clouds: Inferences from SUCCESS , 1998 .

[66]  W. Cotton,et al.  New primary ice-nucleation parameterizations in an explicit cloud model , 1992 .

[67]  A. Nenes,et al.  Parameterization of cirrus cloud formation in large‐scale models: Homogeneous nucleation , 2008 .

[68]  Andrew Gettelman,et al.  Relative humidity over Antarctica from radiosondes, satellites, and a general circulation model , 2006 .

[69]  L. Pfister,et al.  Ice nucleation and cloud microphysical properties in tropical tropopause layer cirrus , 2009 .

[70]  Johannes Hendricks,et al.  Effects of ice nuclei on cirrus clouds in a global climate model , 2011 .

[71]  K. Gierens,et al.  Modelling of cirrus clouds – Part 2: Competition of different nucleation mechanisms , 2008 .

[72]  R. Rauber,et al.  Numerical Simulation of the Effects of Varying Ice Crystal Nucleation Rates and Aggregation Processes on Orographic Snowfall , 1986 .

[73]  B. Luo,et al.  The Origin of High Ice Crystal Number Densities in Cirrus Clouds , 2005 .

[74]  J. Penner,et al.  Cirrus clouds in a global climate model with a statistical cirrus cloud scheme , 2009 .

[75]  S. Kreidenweis,et al.  Ice Formation by Sulfate and Sulfuric Acid Aerosol Particles under Upper-Tropospheric Conditions , 2000 .

[76]  W. Collins,et al.  The Formulation and Atmospheric Simulation of the Community Atmosphere Model Version 3 (CAM3) , 2006 .

[77]  S. Ghan,et al.  Inclusion of Ice Microphysics in the NCAR Community Atmospheric Model Version 3 (CAM3) , 2007 .

[78]  Andrew Gettelman,et al.  Cloud influence on and response to seasonal Arctic sea ice loss , 2009 .

[79]  Paul J. DeMott,et al.  An Empirical Parameterization of Heterogeneous Ice Nucleation for Multiple Chemical Species of Aerosol , 2008 .

[80]  J. Penner,et al.  Influence of anthropogenic sulfate and black carbon on upper tropospheric clouds in the NCAR CAM3 model coupled to the IMPACT global aerosol model , 2009 .

[81]  Andrew Gettelman,et al.  A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests , 2008 .

[82]  W. Collins,et al.  Geoscientific Model Development Toward a minimal representation of aerosols in climate models : description and evaluation in the Community Atmosphere Model CAM 5 , 2012 .

[83]  S. Kreidenweis,et al.  A comparison of heterogeneous ice nucleation parameterizations using a parcel model framework , 2009 .

[84]  M. D. Petters,et al.  Predicting global atmospheric ice nuclei distributions and their impacts on climate , 2010, Proceedings of the National Academy of Sciences.

[85]  Ulrike Lohmann,et al.  A parameterization of cirrus cloud formation: Heterogeneous freezing , 2003 .