Semiconductor heterojunction topics: Introduction and overview

Abstract Semiconductor heterojunctions with ideal lattice matching, well-controlled in fabrication, yield devices that cannot be achieved in any other way. These devices include modulated-doped high-speed field-effect transistors, ultra-high-gain and high-speed bipolar transistors, efficient injection lasers and light-emitting diodes and sensitive photo-detecting structures. Atomic reconstructions take place at heterojunction interfaces and are process-fabrication-dependent and not adequately understood. The barrier discontinuities observed are therefore scattered in value and also somewhat dependent on the determination method. Many papers in this Special Issue contain review aspects of these matters. Others, however, are specific contributions on very particular heterojunction topics. Not all aspects of heterojunctions are dealt with by the papers that follow, and the present article is intended for newcomers to the field as a brief commentary on topics that are not adequately represented.

[1]  A. G. Milnes,et al.  Heterojunctions and Metal Semiconductor Junctions , 1972 .

[2]  D. Arnold,et al.  Backgating in GaAs/(Al,Ga)As modulation‐doped field‐effect transistors and its reduction with a superlattice , 1984 .

[3]  H. Ohno,et al.  Double heterostructure Ga0.47In0.53As MESFETs by MBE , 1980, IEEE Electron Device Letters.

[4]  W. G. Lyons,et al.  Use of a GaAs smoothing layer to improve the heterointerface of GaAs/AlxGa1−xAs field‐effect transistors , 1982 .

[5]  C. Fonstad,et al.  (In,Ga)As/InP n-p-n heterojunction bipolar transistors grown by liquid phase epitaxy with high DC current gain , 1984, IEEE Electron Device Letters.

[6]  H. S. Bennet Modeling GaAs/AlGaAs devices: A critical review , 1985, IEEE Circuits and Devices Magazine.

[7]  C. Fonstad,et al.  Consideration of the relative frequency performance potential of inverted heterojunction n-p-n transistors , 1984, IEEE Electron Device Letters.

[8]  G. Olsen,et al.  The recombination properties of lattice‐mismatched InxGa1−xP/GaAs heterojunctions , 1977 .

[9]  P. Robson,et al.  Gain of a heterojunction bipolar phototransistor , 1985, IEEE Transactions on Electron Devices.

[10]  R. Dalby,et al.  Ge diffusion at Ge/GaAs heterojunctions , 1984 .

[11]  D. Lang,et al.  Observation of deep levels associated with the GaAs/AlxGa1−xAs interface grown by molecular beam epitaxy , 1982 .

[12]  N. Hashizume,et al.  Performance and principle of operation of GaAs ballistic FET , 1983, 1983 International Electron Devices Meeting.

[13]  David A. B. Miller,et al.  High-speed optical modulation with GaAs/GaAlAs quantum wells in a p-i-n diode structure , 1983 .

[14]  T. C. Mcgill,et al.  Correlation for III-V and II-VI Semiconductors of the Au Schottky Barrier Energy with Anion Electronegativity , 1976 .

[15]  C. Y. Chen,et al.  High‐sensitivity Ga0.47In0.53As photoconductive detectors prepared by vapor phase epitaxy , 1984 .

[16]  T. Drummond,et al.  The structural dependence of light sensitivity in (Al,Ga)As/GaAs modulation doped heterostructures , 1984 .

[17]  A. Yariv,et al.  Vertical field‐effect transistors in III‐V semiconductors , 1984 .

[18]  M. Shur,et al.  Ballistic and near ballistic transport in GaAs , 1980, IEEE Electron Device Letters.

[19]  B. Kasper,et al.  New low dark current, high speed Al0.48In0.52As/ Ga0.47In0.53As avalanche photodiode by molecular beam epitaxy for long wavelength fiber optic communication systems , 1984 .

[20]  N. Holonyak,et al.  Pulsed room‐temperature operation of In1−xGaxP1−zAsz double heterojunction lasers at high energy (6470 Å, 1.916 eV) , 1976 .

[21]  T. Chang,et al.  Junction field-effect transistors using In0.53Ga0.47As material grown by molecular beam epitaxy , 1982, IEEE Electron Device Letters.

[22]  R. Bell,et al.  Negative Electron Affinity Devices , 1985 .

[23]  Jerry Tersoff,et al.  Theory of semiconductor heterojunctions: The role of quantum dipoles , 1984 .

[24]  John C. Bean,et al.  GexSi1−x/Si strained‐layer superlattice grown by molecular beam epitaxy , 1984 .

[25]  R. E. Hayes,et al.  Growth and patterning of GaAs/Ge single crystal layers on Si substrates by molecular beam epitaxy , 1984 .

[26]  A. Gossard,et al.  Elimination of the emitter/collector offset voltage in heterojunction bipolar transistors , 1983, 1983 International Electron Devices Meeting.

[27]  T. E. Zipperian,et al.  A gallium phosphide high‐temperature bipolar junction transistor , 1981 .

[28]  T. Drummond,et al.  Interfacial properties of (Al,Ga)As/GaAs structures: Effect of substrate temperature during growth by molecular beam epitaxy , 1982 .

[29]  J.C.M. Hwang,et al.  Material and device considerations for selectively doped heterojunction transistors , 1982, 1982 International Electron Devices Meeting.

[30]  R. M. Biefeld,et al.  Comparison of trapping levels in GaAsP strained‐layer superlattice structures and in their buffer layers , 1984 .

[31]  B. Tell,et al.  An In 0.53 Ga 0.47 As p-channel MOSFET with plasma-grown native oxide insulated gate , 1982 .

[32]  James L. Merz,et al.  Staggered‐lineup heterojunctions as sources of tunable below‐gap radiation: Experimental verification , 1984 .

[33]  T. Ishibashi,et al.  High-frequency characteristics of AlGaAs/GaAs heterojunction bipolar transistors , 1984, IEEE Electron Device Letters.

[34]  Wei Wang,et al.  Molecular beam epitaxial growth and material properties of GaAs and AlGaAs on Si (100) , 1984 .

[35]  R. Whitlock,et al.  Thickness variations in x‐ray filters and laser targets , 1984 .

[36]  G. Osbourn,et al.  Carrier transport coefficients across GaAs–GaAlAs (100) interfaces , 1979 .

[37]  Herbert Kroemer,et al.  Heterostructure devices: A device physicist looks at interfaces , 1983 .

[38]  Y. G. Chai,et al.  Performance characteristics and extended lifetime data for InGaAsP/InP LED's , 1981, IEEE Electron Device Letters.

[39]  John C. Bean,et al.  Modulation doping in GexSi1−x/Si strained layer heterostructures , 1984 .

[40]  Wang,et al.  Evidence of orientation independence of band offset in AlGaAs/GaAs heterostructures. , 1985, Physical review. B, Condensed matter.

[41]  A. Gossard,et al.  Modulation‐doped field‐effect transistor based on a two‐dimensional hole gas , 1984 .

[42]  T. Kuan,et al.  Electron microscope studies of a Ge-GaAs superlattice grown by molecular beam epitaxy , 1983 .

[43]  Salah M. Bedair,et al.  Defect reduction in GaAs epitaxial layers using a GaAsP‐InGaAs strained‐layer superlattice , 1985 .

[44]  S. Koike,et al.  High efficient GaAlAs light‐emitting diodes of 660 nm with a double heterostructure on a GaAlAs substrate , 1983 .

[45]  P. Solomon,et al.  A GaAs gate heterojunction FET , 1984, IEEE Electron Device Letters.

[46]  J.C. Campbell,et al.  High-speed InP/InGaAsP/InGaAs avalanche photodiodes , 1983, 1983 International Electron Devices Meeting.

[47]  F. Capasso Multilayer avalanche photodiodes and solid-state photomultipliers , 1984 .

[48]  A. Shibatomi,et al.  High electron mobility transistors for LSI circuits , 1983, 1983 International Electron Devices Meeting.

[49]  E. A. Kraut,et al.  Valence-band discontinuities for abrupt (110), (100), and (111) oriented Ge-GaAs heterojunctions , 1983 .

[50]  D.L. Miller,et al.  Nonthreshold logic ring oscillators implemented with GaAs/(GaAl)As heterojunction bipolar transistors , 1984, IEEE Electron Device Letters.

[51]  H. Kroemer Determination of heterojunction band offsets by capacitance‐voltage profiling through nonabrupt isotype heterojunctions , 1985 .

[52]  E. A. Kraut,et al.  XPS measurement of GaAs–AlAs heterojunction band discontinuities: Growth sequence dependence , 1981 .

[53]  M.D. Feuer,et al.  IIA-2 selectively doped heterostructure transistors for ultra high-speed integrated circuits , 1984, IEEE Transactions on Electron Devices.

[54]  G. Margaritondo,et al.  Microscopic Study of Semiconductor Heterojunctions - Photoemission Measurement of the Valance-Band Discontinuity and of the Potential Barriers , 1983 .

[55]  T. Ishibashi,et al.  VA-1 AlGaAs/GaAs heterojunction bipolar transistors with cutoff frequencies above 25 GHz , 1984, IEEE Transactions on Electron Devices.

[56]  R. Mertens,et al.  A silicon bipolar transistor with a hydrogenated amorphous emitter , 1984, 1984 International Electron Devices Meeting.

[57]  M.S. Shur,et al.  IIA-4 A self-aligned gate process for IC's based on modulation-doped (Al, Ga)As/GaAs FET's , 1984, IEEE Transactions on Electron Devices.

[58]  S. Chu,et al.  Molecular beam epitaxy of GaSb0.5As0.5 and AlxGa1−xSbyAs1−y lattice matched to InP , 1985 .

[59]  S. Luryi,et al.  Hot‐electron memory effect in double‐layered heterostructures , 1984 .

[60]  Federico Capasso New multilayer and graded gap optoelectronic and high speed devices by band gap engineering , 1984 .

[61]  GaSb0.5As0.5/Al0.35Ga0.65Sb0.48As0.52 superlattice lattice matched to InP prepared by molecular beam epitaxy , 1985 .

[62]  Y. Matsushima,et al.  New type InGaAs/InP heterostructure avalanche photodiode with buffer layer , 1981, IEEE Electron Device Letters.

[63]  A. A. Bergh,et al.  Light-emitting diodes , 1972 .

[64]  Takeshi Kobayashi Theory of heterostructure inversion‐mode metal‐insulator‐semiconductor field‐effect transistors , 1983 .

[65]  W. Tsang Heterostructure semiconductor lasers prepared by molecular beam epitaxy , 1984 .

[66]  N. Holonyak,et al.  Disorder of an AlxGa1−xAs‐GaAs superlattice by donor diffusion , 1984 .

[67]  M.D. Feuer,et al.  Selectively doped heterostructure frequency dividers , 1983, IEEE Electron Device Letters.

[68]  G. C. Osbourn,et al.  InAsSb strained‐layer superlattices for long wavelength detector applications , 1984 .

[69]  K. Nakajima,et al.  Experiments and Calculation of the Al‐Ga‐Sb Ternary Phase Diagram , 1979 .

[70]  C. Y. Chen,et al.  Low‐noise Ga0.47In0.53As photoconductive detectors using Fe compensation , 1984 .

[71]  Kazuo Nakajima,et al.  Composition dependence of the band gaps of In1−xGaxAs1−yPy quaternary solids lattice matched on InP substrates , 1978 .

[72]  S. L. Wright,et al.  Energy band‐gap discontinuities in GaAs:(Al,Ga)As heterojunctions , 1985 .

[73]  A. Gossard,et al.  IIIA-3 modulation-doped field-effect transistors and logic gates based on two-dimensional hole gas , 1984, IEEE Transactions on Electron Devices.

[74]  K. Oe,et al.  Lateral GaAs growth over tungsten gratings on (001) GaAs substrates by metalorganic chemical vapor deposition and applications to vertical field‐effect transistors , 1984 .

[75]  Henry Kressel,et al.  Semiconductor Lasers and Heterojunction LEDs , 1977 .

[76]  W. D. Johnston,et al.  Misfit stress in InGaAs/InP heteroepitaxial structures grown by vapor‐phase epitaxy , 1985 .

[77]  M. Hollis,et al.  Importance of electron scattering with coupled plasmon-optical phonon modes in GaAs planar-doped barrier transistors , 1983, IEEE Electron Device Letters.

[78]  E. H. Rhoderick,et al.  Metal–Semiconductor Contacts , 1979 .

[79]  F. Capasso The channeling avalanche photodiode: A novel ultra-low-noise interdigitated p-n junction detector , 1982, IEEE Transactions on Electron Devices.

[80]  Sigurd Wagner,et al.  Heterojunction band discontinuities , 1976 .

[81]  C. Bethea,et al.  New graded band‐gap picosecond phototransistor , 1983 .

[82]  G. W. Hooft,et al.  Temperature dependence of interface recombination and radiative recombination in (Al, Ga)As heterostructures , 1983 .

[83]  Hans Melchior Detectors for lightwave communication , 1977 .

[84]  A. Y. Cho,et al.  Bias‐free selectively doped AlxGa1−x As‐GaAs picosecond photodetectors , 1982 .

[85]  R. C. Miller,et al.  Extrinsic layer at AlxGa1−xAs‐GaAs interfaces , 1982 .

[86]  David E. Aspnes,et al.  RECOMBINATION AT SEMICONDUCTOR SURFACES AND INTERFACES , 1983 .

[87]  C. Hooper,et al.  Saturation velocity determination for In0.53Ga0.47As field‐effect transistors , 1981 .

[88]  W. Kopp,et al.  GaAs/AlGaAs MODFET's grown on , 1984, IEEE Electron Device Letters.

[89]  E. Mendez,et al.  High mobility electron gas in selectively doped n:AlGaAs/GaAs heterojunctions , 1984 .

[90]  D.L. Miller,et al.  GaAs/(Ga,Al)As heterojunction bipolar transistors with buried oxygen-implanted isolation layers , 1984, IEEE Electron Device Letters.

[91]  G. Weimann,et al.  Molecular beam epitaxial growth and transport properties of modulation‐doped AlGaAs‐GaAs heterostructures , 1985 .

[92]  H. Morkoc,et al.  Double heterojunction AlxGa1-xAs/GaAs bipolar transistors (DHBJT's) by MBE with a current gain of 1650 , 1983, IEEE Electron Device Letters.

[93]  H. Kressel,et al.  The application of heterojunction structures to optical devices , 1975 .

[94]  A. Y. Cho,et al.  Ultrahigh speed modulation‐doped heterostructure field‐effect photodetectors , 1983 .

[95]  K. Heime,et al.  Deep level analysis in (AlGa)As-GaAs MODFETs by means of low frequency noise measurements , 1983, 1983 International Electron Devices Meeting.

[96]  H. Wieder Problems and prospects of compound semiconductor field‐effect transistors , 1980 .

[97]  R. C. Miller,et al.  Integrated multijunction GaAs photodetector with high output voltage , 1978 .

[98]  J. V. Vechten,et al.  Intermixing of an AlAs‐GaAs superlattice by Zn diffusion , 1982 .

[99]  K. Alavi,et al.  High-gain Al0.48In0.52As/Ga0.53As vertical n-p-n heterojunction bipolar transistors grown by molecular-beam epitaxy , 1983, IEEE Electron Device Letters.

[100]  V. Narayanamurti Crystalline semiconductor heterostructures , 1984 .

[101]  S. Wright,et al.  Polar‐on‐nonpolar epitaxy: Sublattice ordering in the nucleation and growth of GaP on Si(211) surfaces , 1982 .

[102]  F. Capasso NEW DEVICE APPLICATIONS OF BANDEDGE DISCONTINUITIES IN MULTILAYER HETEROJUNCTION STRUCTURES , 1983 .

[103]  P. Petroff,et al.  Structure and composition of interfaces between Ga1−xAlxAs and GaAs layers grown by liquid phase epitaxy (LPE) , 1980 .

[104]  C. Burrus,et al.  Novel hybrid optically bistable switch: The quantum well self‐electro‐optic effect device , 1984 .

[105]  M. Shur,et al.  Charge control model of inverted GaAs-AlGaAs modulation doped FET's (IMODFET's) , 1984 .

[106]  D. A. Kleinman,et al.  Parabolic quantum wells with theGaAs−AlxGa1−xAssystem , 1984 .

[107]  C. Y. Chen,et al.  Modulated barrier photodiode: A new majority‐carrier photodetector , 1981 .

[108]  A. Gossard,et al.  Transport properties of GaAs‐AlxGa1−x As heterojunction field‐effect transistors , 1981 .

[109]  Preparation of (AlxGa1−x)yIn1−yAs (0≤x≤0.5,y=0.47) lattice matched to InP substrates by molecular beam epitaxy , 1982 .

[110]  J. Bean,et al.  Structure imaging of commensurate GexSi1−x/Si(100) interfaces and superlattices , 1985 .

[111]  C. Y. Chen Theory of a modulated barrier photodiode , 1981 .

[112]  N. Olsson,et al.  Pseudo‐quaternary GaInAsP semiconductors: A new Ga0.47In0.53As/InP graded gap superlattice and its applications to avalanche photodiodes , 1984 .

[113]  O. Bonnaud,et al.  Modelling of a new high current gain bipolar transistor with n-doped hydrogenated silicon emitter , 1985 .

[114]  J. Tersoff Schottky Barrier Heights and the Continuum of Gap States , 1984 .

[115]  P. Lugli,et al.  Ballistic transport in semiconductors , 1982, IEEE Electron Device Letters.

[116]  S. Forrest,et al.  Relationship between the conduction‐band discontinuities and band‐gap differences of InGaAsP/InP heterojunctions , 1984 .

[117]  H. Casey,et al.  Heterostructure lasers , 1978 .

[118]  T. H. Glisson,et al.  Energy bandgap and lattice constant contours of iii-v quaternary alloys of the form Ax By Cz D or ABx Cy Dz , 1978 .

[119]  M. A. Fischetti Photovoltaic-cell technologies joust for position: The fabrication of solar cells has become a bona fide industry with three versions vying to dominate the marketplace , 1984, IEEE Spectrum.

[120]  M. Ito,et al.  Monolithic integration of a photodiode and a field‐effect transistor on a GaAs substrate by molecular beam epitaxy , 1983 .

[121]  A. R. Clawson,et al.  Accumulation mode Ga0.47In0.53As insulated gate field‐effect transistors , 1983 .

[122]  Y. Awano,et al.  Monte Carlo simulation of AlGaAs/GaAs heterojunction bipolar transistors , 1984, IEEE Electron Device Letters.

[123]  S. Luryi,et al.  A field-effect transistor with a negative differential resistance , 1984, IEEE Electron Device Letters.

[124]  F. Capasso,et al.  Staircase solid-state photomultipliers and avalanche photodiodes with enhanced ionization rates ratio , 1983, IEEE Transactions on Electron Devices.

[125]  S. Luryi,et al.  New Transient electrical polarization phenomenon in sawtooth superlattices , 1983 .

[126]  G.E. Stillman,et al.  An analysis of the performance of heterojunction phototransistors for fiber optic communications , 1982, IEEE Transactions on Electron Devices.

[127]  James S. Harris,et al.  Measurement of isotype heterojunction barriers by C‐V profiling , 1980 .

[128]  S. Bedair,et al.  Disorder of an InxGa1−xAs‐GaAs superlattice by Zn diffusion , 1983 .

[129]  P. Asbeck,et al.  Numerical simulation of GaAs/GaAlAs heterojunction bipolar transistors , 1982, IEEE Electron Device Letters.

[130]  K. W. Wecht,et al.  Measurement of the conduction‐band discontinuity of molecular beam epitaxial grown In0.52Al0.48As/In0.53Ga0.47As, N‐n heterojunction by C‐V profiling , 1983 .

[131]  H. Kroemer Barrier control and measurements: Abrupt semiconductor heterojunctions , 1984 .

[132]  A. G. Milnes,et al.  Semiconductor Devices and Integrated Electronics , 1980 .

[133]  J.R. Hauser,et al.  Ballistic transport in GaAs , 1983, IEEE Electron Device Letters.

[134]  Richard H. Bube,et al.  Fundamentals of solar cells , 1983 .

[135]  R. S. Bauer,et al.  On the adjustability of the “abrupt” heterojunction band-gap discontinuity , 1983 .

[136]  S. W. Kirchoefer,et al.  Zn diffusion and disordering of an AlAs-GaAs superlattice along its layers , 1982 .

[137]  L. Coldren,et al.  Submicrometer self-aligned recessed gate InGaAs MISFET exhibiting very high transconductance , 1984, IEEE Electron Device Letters.

[138]  W. Wiegmann,et al.  Impurity trapping, interface structure, and luminescence of GaAs quantum wells grown by molecular beam epitaxy , 1984 .

[139]  A. Sasaki,et al.  InGaAsP/InP wavelength-selective heterojunction phototransistors , 1984, IEEE Transactions on Electron Devices.

[140]  M.S. Adler,et al.  Optimum semiconductors for power field effect transistors , 1981, IEEE Electron Device Letters.

[141]  M. A. Fischetti Photovoltaic-cell technologies joust for position , 1984 .

[142]  A. Cho,et al.  Short channel Ga0.47In0.53As/Al0.48In0.52As selectively doped field effect transistors , 1982, IEEE Electron Device Letters.

[143]  S. Luryi,et al.  Charge injection transistor based on real-space hot-electron transfer , 1984, IEEE Transactions on Electron Devices.

[144]  H. Kroemer,et al.  Heterostructure bipolar transistors and integrated circuits , 1982, Proceedings of the IEEE.

[145]  Leonard J. Brillson,et al.  The structure and properties of metal-semiconductor interfaces , 1982 .

[146]  R. S. Bauer,et al.  Inequality of semiconductor heterojunction conduction‐band‐edge discontinuity and electron affinity difference , 1983 .

[147]  Federico Capasso,et al.  Bipolar transistor with graded band-gap base , 1983 .