Thermo-optical modeling of high power operation of 2 μm codoped Tm,Ho solid-state lasers

The results of coupled thermo-optical modeling of Tm,Ho solid-state laser operation are reported. A rate dynamics model integrated together with a TEM00 distribution for the total number of stimulated photons is coupled with a two-dimensional time-dependent heat transfer model. The heat transfer model includes absorption, heat release, and transfer inside the crystal as well as the thermal effect of the spontaneously emitted infrared radiation. In water cooled crystal operation this radiation is shown to be absorbed within the water boundary layer, producing significant inhibition of dissipation of the heat released inside the crystal. This effect leads to crystal superheating and significant inhibition of laser energy output. Absorption loss, in particular, due to water vapor present in the cavity is found to decrease significantly laser pulse energy. Numerical results are compared to previous (Tm,Ho:yttrium lithium fluoride) and new (Tm,Ho:ceramic yttrium aluminum garnet) experimental data and discussed...

[1]  Leon Esterowitz,et al.  Alexandrite-laser excitation of a Tm:Ho:Y 3 Al 5 O 12 laser , 1991 .

[2]  Theoretical and experimental investigation of actively Q-switched Tm,Ho:YLF lasers. , 2006, Optics express.

[3]  G. Rustad,et al.  Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion , 1996 .

[4]  I. Elder,et al.  Lasing in diode-pumped Tm:YAP, Tm,Ho:YAP and Tm,Ho:YLF , 1998 .

[5]  H. Hara,et al.  Comparison of Lasing Performance of Tm, Ho:YLF Lasers by use of Single and Double Cavities. , 2000, Applied optics.

[6]  J. Pelon,et al.  Modeling of Tm, Ho:YAG and Tm, Ho:YLF 2- mum Lasers and Calculation of Extractable Energies. , 1998, Applied optics.

[7]  V. Smirnov,et al.  Relaxation oscillations of the radiation from a 2-μm holmium laser with a Cr,Tm,Ho : YSGG crystal , 1998 .

[8]  J. Tyminski,et al.  Gain dynamics of Tm:Ho:YAG pumped in near infrared , 1989 .

[9]  W. P. Risk,et al.  Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses , 1988 .

[10]  Nan Ei Yu,et al.  Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals , 2005 .

[11]  Nan Ei Yu,et al.  Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals , 2005 .

[12]  P. Laporta,et al.  Widely tunable continuous-wave diode-pumped 2-µm Tm-Ho:KYF4 laser , 2004 .

[13]  U. Singh,et al.  125-mJ diode-pumped injection-seeded Ho:Tm:YLF laser. , 1998, Optics letters.

[14]  M. Querry,et al.  Wedge shaped cell for highly absorbent liquids: infrared optical constants of water. , 1989, Applied optics.

[15]  G. Bourdet,et al.  Theoretical modeling and design of a Tm, Ho:YLiF4 microchip laser. , 1999, Applied optics.

[16]  D. Burns,et al.  Modeling and experimental investigation of a diode-pumped Tm:YAlO/sub 3/ laser with a- and b-cut crystal orientations , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[17]  N. Saito,et al.  Computational model for operation of 2 mum co-doped Tm,Ho solid state lasers. , 2007, Optics express.

[18]  U. Singh,et al.  Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4 , 2004 .

[19]  Kazuhiro Asai,et al.  Spectroscopic and diode-pumped-laser properties of TM,Ho:YLF; Tm, Ho:LuLF; and Tm,Ho:LuAG crystals: a comparative study , 2003 .

[20]  Chang J. Lee,et al.  Ho:Tm lasers. II. Experiments , 1996 .

[21]  Atsushi Sato,et al.  Lasing characteristics and optimizations of a diode-side-pumped Tm, Ho:GdVO4 laser. , 2004, Optics letters.

[22]  Stuart D. Jackson,et al.  CW operation of a 1.064-/spl mu/m pumped Tm-Ho-doped silica fiber laser , 1998 .

[23]  Satoshi Wada,et al.  Numerical simulation and optimization of Q-switched 2 mum Tm,Ho:YLF laser. , 2007, Optics express.

[24]  K. Murray,et al.  Diode-pumped long-pulse-length Ho:Tm:YLiF(4) laser at 10 Hz. , 1995, Optics letters.

[25]  Milan R. Kokta,et al.  Spectral dynamics of laser-pumped Y3Al5O12:Tm,Ho lasers , 1992 .

[26]  G. Gurzadyan,et al.  Handbook of nonlinear optical crystals , 1991 .

[27]  Petrin,et al.  Energy-transfer processes in Y3Al5O12:Tm,Ho. , 1992, Physical review. B, Condensed matter.

[28]  A Tünnermann,et al.  62-W cw TEM(00) Nd:YAG laser side-pumped by fiber-coupled diode lasers. , 1996, Optics letters.

[29]  Walter Koechner,et al.  Solid-State Laser Engineering , 1976 .

[30]  Norman P. Barnes,et al.  Ho:Tm lasers. I. Theoretical , 1996 .

[31]  T. Geisel,et al.  The scaling laws of human travel , 2006, Nature.