Recent developments in reversible photoregulation of oligonucleotide structure and function.

There is a growing interest in the photoregulation of biological functions, due to the high level of spatiotemporal precision achievable with light. Additionally, light is non-invasive and waste-free. In particular, the photoregulation of oligonucleotide structure and function is a rapidly developing study field with relevance to biological, physical and material sciences. Molecular photoswitches have been incorporated in oligonucleotides for 20 years, and the field has currently grown beyond fundamental studies on photochemistry of the switches and DNA duplex stability, and is moving towards applications in chemical biology, nanotechnology and material science. Moreover, the currently emerging field of photopharmacology indicates the relevance of photocontrol in future medicine. In recent years, a large number of publications has appeared on photoregulation of DNA and RNA structure and function. New strategies are evaluated and novel, exciting applications are shown. In this comprehensive review, the key strategies for photoswitch inclusion in oligonucleotides are presented and illustrated with recent examples. Additionally the applications that have emerged in recent years are discussed, including gene regulation, drug delivery and materials design. Finally, we identify the challenges that the field currently faces and look forward to future applications.

[1]  R. P. Gandhi,et al.  Photomodulation of PS-modified oligonucleotides containing azobenzene substituent at pre-selected positions in phosphate backbone. , 2007, Bioorganic & medicinal chemistry.

[2]  Jishan Li,et al.  Remote-controlled release of DNA in living cells via simultaneous light and host-guest mediations. , 2014, Analytical chemistry.

[3]  H. Löhmannsröben,et al.  Interaction of photosensitive surfactant with DNA and poly acrylic acid. , 2014, The Journal of chemical physics.

[4]  J. Andréasson,et al.  Reversible Energy-Transfer Switching on a DNA Scaffold , 2015, Journal of the American Chemical Society.

[5]  M. Komiyama,et al.  Spiropyran as a Regulator of DNA Hybridization with Reversed Switching Mode to That of Azobenzene , 2001 .

[6]  Cuichen Wu,et al.  Macroscopic volume change of dynamic hydrogels induced by reversible DNA hybridization. , 2012, Journal of the American Chemical Society.

[7]  K. Yoshikawa,et al.  Light-regulated mRNA condensation by a photosensitive surfactant works as a series photoswitch of translation activity in the presence of small RNAs. , 2011, Biomacromolecules.

[8]  Kenichi Yoshikawa,et al.  Discrete Coil-Globule Transition of Large DNA Induced by Cationic Surfactant , 1995 .

[9]  Günter Mayer,et al.  Biologically active molecules with a "light switch". , 2006, Angewandte Chemie.

[10]  M. Komiyama,et al.  NMR study on the photoresponsive DNA tethering an azobenzene. Assignment of the absolute configuration of two diastereomers and structure determination of their duplexes in the trans-form. , 2003, Journal of the American Chemical Society.

[11]  A. Deiters,et al.  Optochemical control of deoxyoligonucleotide function via a nucleobase-caging approach. , 2014, Accounts of chemical research.

[12]  Hana Cahová,et al.  Nucleoside-based diarylethene photoswitches and their facile incorporation into photoswitchable DNA. , 2013, Angewandte Chemie.

[13]  D. P. Vercauteren,et al.  Is Solvated Trans-Azobenzene Twisted or Planar ? , 2006 .

[14]  S. Obika,et al.  C5-azobenzene-functionalized locked nucleic acid uridine: isomerization properties, hybridization ability, and enzymatic stability. , 2015, Organic & biomolecular chemistry.

[15]  Masahiro Irie,et al.  Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives , 1988 .

[16]  H. Wagenknecht,et al.  Structure-sensitive and self-assembled helical pyrene array based on DNA architecture. , 2006, Angewandte Chemie.

[17]  Hongbin Yan,et al.  Incorporation of cyclic azobenzene into oligodeoxynucleotides for the photo-regulation of DNA hybridization. , 2015, Bioorganic & medicinal chemistry letters.

[18]  H. Asanuma,et al.  2',6'-Dimethylazobenzene as an efficient and thermo-stable photo-regulator for the photoregulation of DNA hybridization. , 2007, Chemical communications.

[19]  H. Ihmels,et al.  Photoswitchable DNA-binding properties of a photochromic spirooxazine derivative. , 2013, Organic & biomolecular chemistry.

[20]  C. Näther,et al.  Highly efficient reversible Z-E photoisomerization of a bridged azobenzene with visible light through resolved S(1)(n pi*) absorption bands. , 2009, Journal of the American Chemical Society.

[21]  Yunqi Yan,et al.  Dynamic force spectroscopy of photoswitch-modified DNA. , 2014, ACS nano.

[22]  Itamar Willner,et al.  DNA switches: from principles to applications. , 2015, Angewandte Chemie.

[23]  N. K. Mani,et al.  Photosensitive surfactants with various hydrophobic tail lengths for the photocontrol of genomic DNA conformation with improved efficiency. , 2010, Chemistry.

[24]  Wiktor Szymanski,et al.  Photopharmacology: beyond proof of principle. , 2014, Journal of the American Chemical Society.

[25]  Deevya L. Narayanan,et al.  Review: Ultraviolet radiation and skin cancer , 2010, International journal of dermatology.

[26]  S. Hecht,et al.  o-Fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way isomerization with visible light. , 2012, Journal of the American Chemical Society.

[27]  Toshio Mochizuki,et al.  Design of an artificial functional nanomaterial with high recognition ability , 2012, Natural Computing.

[28]  G. Brezesinski,et al.  Photosensitive surfactants: micellization and interaction with DNA. , 2014, The Journal of chemical physics.

[29]  A. Heckel,et al.  Ultrafast dynamics of a spiropyran in water. , 2012, Journal of the American Chemical Society.

[30]  A. González-Pérez,et al.  Reversible DNA compaction. , 2014, Current topics in medicinal chemistry.

[31]  J. Andréasson,et al.  DNA-binding properties of amidine-substituted spiropyran photoswitches. , 2014, Chemistry.

[32]  G. Kumar,et al.  Photochemistry of azobenzene-containing polymers , 1989 .

[33]  H. Asanuma,et al.  Construction of photoresponsive RNA for photoswitching RNA hybridization. , 2010, Organic & biomolecular chemistry.

[34]  Zongxi Li,et al.  Mesoporous silica nanoparticles in biomedical applications. , 2012, Chemical Society reviews.

[35]  T. Kurucsev,et al.  Analysing DNA complexes by circular and linear dichroism , 1994, Journal of molecular recognition : JMR.

[36]  H. Asanuma,et al.  A photon-fueled DNA nanodevice that contains two different photoswitches. , 2012, Angewandte Chemie.

[37]  V. Tropepe,et al.  Photoswitching azo compounds in vivo with red light. , 2013, Journal of the American Chemical Society.

[38]  Weihong Tan,et al.  An autonomous and controllable light-driven DNA walking device. , 2012, Angewandte Chemie.

[39]  A T Ansevin,et al.  High‐resolution thermal denaturation of DNA. I. Theoretical and practical considerations for the resolution of thermal subtransitions , 1976, Biopolymers.

[40]  Ryosuke Watanabe,et al.  Nanomechanical DNA Origami pH Sensors , 2014, Sensors.

[41]  Klemen Bohinc,et al.  Condensed DNA: condensing the concepts. , 2011, Progress in biophysics and molecular biology.

[42]  D. Bassani,et al.  Photocontrolled Binding and Binding-Controlled Photochromism within Anthracene-Modified DNA , 2012, Journal of the American Chemical Society.

[43]  H. Asanuma,et al.  Rational Design of Functional DNA with a Non-Ribose Acyclic Scaffold , 2009 .

[44]  V. N. Emel’yanenko,et al.  Re-investigation and Data Assessment of the Isomerization and 2,2′-Cyclization of Stilbenes and Azobenzenes† , 2009 .

[45]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[46]  J. S. Vyle,et al.  Reversible photocontrol of deoxyribozyme-catalyzed RNA cleavage under multiple-turnover conditions. , 2006, Angewandte Chemie.

[47]  M. Samoć,et al.  Photochromic switching of the DNA helicity induced by azobenzene derivatives , 2016, Scientific Reports.

[48]  M. Irie Discovery and development of photochromic diarylethenes , 2015 .

[49]  Yangyang Yang,et al.  Dynamic assembly/disassembly processes of photoresponsive DNA origami nanostructures directly visualized on a lipid membrane surface. , 2014, Journal of the American Chemical Society.

[50]  N. Seeman DNA in a material world , 2003, Nature.

[51]  Sung Yong Park,et al.  DNA-programmable nanoparticle crystallization , 2008, Nature.

[52]  H. Asanuma,et al.  p-Stilbazole moieties as artificial base pairs for photo-cross-linking of DNA duplex. , 2013, Journal of the American Chemical Society.

[53]  G. Holder,et al.  Nitrobenzene reduction and reductive cleavage of azobenzenes in two species of Arachnida. , 1973, Life sciences.

[54]  Kirk M. Ririe,et al.  Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. , 1997, Analytical biochemistry.

[55]  Hiroyuki Asanuma,et al.  Light-driven DNA nanomachine with a photoresponsive molecular engine. , 2014, Accounts of chemical research.

[56]  F. Heaney,et al.  Oligo switches: photoresponsive oligonucleotide conjugates by solid-supported click chemistry , 2013 .

[57]  Mithun Biswas,et al.  In Search of an Efficient Photoswitch for Functional RNA: Design Principles from a Microscopic Analysis of Azobenzene-linker-RNA Dynamics with Different Linkers. , 2015, The journal of physical chemistry. B.

[58]  Yunqi Yan,et al.  Photoswitchable oligonucleotide-modified gold nanoparticles: controlling hybridization stringency with photon dose. , 2012, Nano letters.

[59]  D. Baigl,et al.  Photosensitive polyamines for high-performance photocontrol of DNA higher-order structure. , 2014, ACS nano.

[60]  N. Seeman,et al.  Programmable materials and the nature of the DNA bond , 2015, Science.

[61]  H. Asanuma,et al.  Analysis of coherent heteroclustering of different dyes by use of threoninol nucleotides for comparison with the molecular exciton theory. , 2009, Chemistry.

[62]  Jing Pan,et al.  Dynamic and Progressive Control of DNA Origami Conformation by Modulating DNA Helicity with Chemical Adducts. , 2016, ACS nano.

[63]  Chunhui Huang,et al.  DNA gated photochromism and fluorescent switch in a thiazole orange modified diarylethene. , 2014, Chemical communications.

[64]  Zhi Zhu,et al.  Photoresponsive DNA-cross-linked hydrogels for controllable release and cancer therapy. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[65]  B. Feringa,et al.  Orthogonal photoswitching in a multifunctional molecular system , 2016, Nature Communications.

[66]  Shunzo Yamamoto,et al.  Thermal Cis-to-Trans Isomerization of Substituted Azobenzenes II. Substituent and Solvent Effects , 1976 .

[67]  Joakim Andréasson,et al.  Photoswitched DNA-binding of a photochromic spiropyran. , 2008, Journal of the American Chemical Society.

[68]  M. Sundaralingam,et al.  Crystal structures of A‐DNA duplexes , 1997 .

[69]  E. Fischer Temperature Dependence of Photoisomerization Equilibria. Part I. Azobenzene and the Azonaphthalenes , 1960 .

[70]  A. Heckel,et al.  Spiropyran photoswitches in the context of DNA: synthesis and photochromic properties. , 2013, Chemistry.

[71]  Hao Yan,et al.  Reconfigurable DNA origami to generate quasifractal patterns. , 2012, Nano letters.

[72]  W. Brittain,et al.  Photocontrolled micellar aggregation of amphiphilic DNA-azobenzene conjugates. , 2015, Colloids and surfaces. B, Biointerfaces.

[73]  Supriya Shidhaye,et al.  Advances in polymeric micelles for drug delivery and tumor targeting. , 2010, Nanomedicine : nanotechnology, biology, and medicine.

[74]  Wei Wang,et al.  UV light-triggered unpacking of DNA to enhance gene transfection of azobenzene-containing polycations. , 2014, Journal of materials chemistry. B.

[75]  B. Lukyanov,et al.  Spiropyrans: Synthesis, Properties, and Application. (Review) , 2005 .

[76]  V. Tropepe,et al.  Fluorescence imaging of azobenzene photoswitching in vivo. , 2011, Angewandte Chemie.

[77]  P. Neviani,et al.  Triggering of guanosine self-assembly by light. , 2010, Angewandte Chemie.

[78]  S. Xiao,et al.  Light-driven reversible strand displacement using glycerol azobenzene inserted DNA , 2015 .

[79]  A. Heckel,et al.  Azobenzene C-Nucleosides for Photocontrolled Hybridization of DNA at Room Temperature. , 2015, Chemistry.

[80]  S. Hecht,et al.  Switching Diarylethenes Reliably in Both Directions with Visible Light. , 2016, Angewandte Chemie.

[81]  E. Fischer,et al.  Temperature dependence of photoisomerization. VI. Viscosity effect , 1968 .

[82]  Yasushi Yokoyama,et al.  Fulgides for Memories and Switches. , 2000, Chemical reviews.

[83]  S. Xiao,et al.  Highly efficient room-temperature photoresponsive DNA tethering azobenzene through backbone-inserted glycerol via ether bond. , 2013, Small.

[84]  A. Jäschke,et al.  Photochromism of Diarylethene‐Functionalized 7‐Deazaguanosines , 2013 .

[85]  John M. Beierle,et al.  Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. , 2013, Chemical reviews.

[86]  A. Zinchenko,et al.  Photochemical Modulation of DNA Conformation by Organic Dications , 2012, Chembiochem : a European journal of chemical biology.

[87]  K. Yamana,et al.  SYNTHESIS OF A NEW PHOTOISOMERIZABLE LINKER FOR CONNECTING TWO OLIGONUCLEOTIDE SEGMENTS , 1996 .

[88]  V. Bloomfield DNA condensation by multivalent cations. , 1997, Biopolymers.

[89]  Gregory T. Carroll,et al.  A chiroptical photoswitchable DNA complex. , 2011, The journal of physical chemistry. B.

[90]  A. Estevez-Torres,et al.  DNA compaction: fundamentals and applications , 2011 .

[91]  Yangyang Yang,et al.  Single-molecule visualization of the hybridization and dissociation of photoresponsive oligonucleotides and their reversible switching behavior in a DNA nanostructure. , 2012, Angewandte Chemie.

[92]  H. Asanuma,et al.  Nick sealing by T4 DNA ligase on a modified DNA template: tethering a functional molecule on D-threoninol. , 2011, Chemistry.

[93]  Alexander K. Chibisov† and,et al.  Photoprocesses in Spiropyran-Derived Merocyanines , 1997 .

[94]  W. Browne,et al.  Multiphotochromic molecular systems. , 2015, Chemical Society reviews.

[95]  M. Komiyama,et al.  PHOTO-RESPONSIVE OLIGONUCLEOTIDES CARRYING AZOBENZENE IN THE SIDE-CHAINS , 1998 .

[96]  M. Ratner,et al.  DNA-based optomechanical molecular motor. , 2011, Journal of the American Chemical Society.

[97]  A. Okamoto,et al.  Pyrene-labeled base-discriminating fluorescent DNA probes for homogeneous SNP typing. , 2004, Journal of the American Chemical Society.

[98]  W. Tan,et al.  Molecular engineering of photoresponsive three-dimensional DNA nanostructures. , 2011, Chemical communications.

[99]  Xiaolin Wang,et al.  Light-driven conformational regulation of human telomeric G-quadruplex DNA in physiological conditions. , 2011, Organic & biomolecular chemistry.

[100]  Barbara Saccà,et al.  DNA origami: the art of folding DNA. , 2012, Angewandte Chemie.

[101]  Weihong Tan,et al.  Building a nanostructure with reversible motions using photonic energy. , 2012, ACS nano.

[102]  Mithun Biswas,et al.  Molecular dynamics study of the controlled destabilization of an RNA hairpin structure by a covalently attached azobenzene switch. , 2014, The journal of physical chemistry. B.

[103]  Hiroyuki Asanuma,et al.  Azobenzene-tethered T7 promoter for efficient photoregulation of transcription. , 2006, Journal of the American Chemical Society.

[104]  S. Obika,et al.  C5-Azobenzene-substituted 2'-Deoxyuridine-containing Oligodeoxynucleotides for Photo-Switching Hybridization , 2014, Molecules.

[105]  D. Hilvert,et al.  Modulating PNA/DNA hybridization by light. , 2010, Angewandte Chemie.

[106]  Y. Mély,et al.  Role of endocytosis in the transfection of L929 fibroblasts by polyethylenimine/DNA complexes. , 2001, Biochimica et biophysica acta.

[107]  Dynamics of Inter-DNA Chain Interaction of Photoresponsive DNA. , 2016, Journal of the American Chemical Society.

[108]  M. Wasielewski,et al.  Structure and photoinduced electron transfer in exceptionally stable synthetic DNA hairpins with stilbenediether linkers , 1999 .

[109]  Mathieu Morel,et al.  Photodependent Melting of Unmodified DNA Using a Photosensitive Intercalator: A New and Generic Tool for Photoreversible Assembly of DNA Nanostructures at Constant Temperature. , 2016, Nano letters.

[110]  H. Sugiyama,et al.  Direct observation of the dual-switching behaviors corresponding to the state transition in a DNA nanoframe. , 2014, Chemical communications.

[111]  Defects in DNA: Lessons from Molecular Motor Design , 2012 .

[112]  Vasilis Ntziachristos,et al.  Shedding light onto live molecular targets , 2003, Nature Medicine.

[113]  Na Liu,et al.  A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function , 2016, Nature Communications.

[114]  Mizuo Maeda,et al.  Straightforward and reversible photoregulation of hybridization by using a photochromic nucleoside. , 2008, Angewandte Chemie.

[115]  H. Wagenknecht,et al.  Diarylethene-modified nucleotides for switching optical properties in DNA , 2012, Beilstein journal of organic chemistry.

[116]  S. Obika,et al.  Synthesis and Properties of 2'-Deoxyuridine Analogues Bearing Various Azobenzene Derivatives at the C5 Position , 2015 .

[117]  Yong Liu,et al.  Light-regulated catalysis by an RNA-cleaving deoxyribozyme. , 2004, Journal of molecular biology.

[118]  Jing Pan,et al.  Design Principles of DNA Enzyme-Based Walkers: Translocation Kinetics and Photoregulation. , 2015, Journal of the American Chemical Society.

[119]  S. Santer,et al.  Phase diagrams of DNA-photosensitive surfactant complexes: effect of ionic strength and surfactant structure. , 2014, The Journal of chemical physics.

[120]  Mithun Biswas,et al.  Reversible photoswitching of RNA hybridization at room temperature with an azobenzene C-nucleoside. , 2015, Chemistry.

[121]  Robert L. Letsinger,et al.  Use of a Stilbenedicarboxamide Bridge in Stabilizing, Monitoring, and Photochemically Altering Folded Conformations of Oligonucleotides , 1995 .

[122]  Anne-Laure M. Le Ny,et al.  Photoreversible DNA condensation using light-responsive surfactants. , 2006, Journal of the American Chemical Society.

[123]  Masahiro Irie,et al.  Diarylethenes for Memories and Switches. , 2000, Chemical reviews.

[124]  A. Jäschke,et al.  Ultrafast Time-Resolved Spectroscopy of Diarylethene-Based Photoswitchable Deoxyuridine Nucleosides. , 2015, The journal of physical chemistry letters.

[125]  Yunqi Yan,et al.  Photoisomerization quantum yield of azobenzene-modified DNA depends on local sequence. , 2013, Journal of the American Chemical Society.

[126]  B. Feringa,et al.  Driving unidirectional molecular rotary motors with visible light by intra- and intermolecular energy transfer from palladium porphyrin. , 2012, Journal of the American Chemical Society.

[127]  J. B. Flannery Photo- and thermochromic transients from substituted 1',3',3'-trimethylindolinobenzospiropyrans , 1968 .

[128]  G Andrew Woolley,et al.  Azobenzene photoswitches for biomolecules. , 2011, Chemical Society reviews.

[129]  N. Sugimoto,et al.  Reversible stability switching of a hairpin DNA via a photo-responsive linker unit. , 2009, Chemical communications.

[130]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[131]  Yujian He,et al.  Photoswitching properties of hairpin ODNs with azobenzene derivatives at the loop position , 2015 .

[132]  G. Glasser,et al.  Direct measurement of the dipole moment of a metastable merocyanine by electromechanical interferometry , 1997 .

[133]  K. Yoshikawa,et al.  Sequence-independent and reversible photocontrol of transcription/expression systems using a photosensitive nucleic acid binder , 2009, Proceedings of the National Academy of Sciences.

[134]  D. Waldeck Photoisomerization dynamics of stilbenes in polar solvents , 1993 .

[135]  H. Asanuma,et al.  Photoregulation of the Formation and Dissociation of a DNA Duplex by Using the cis-trans Isomerization of Azobenzene. , 1999, Angewandte Chemie.

[136]  Y. Yang,et al.  Visible light switching of a BF2-coordinated azo compound. , 2012, Journal of the American Chemical Society.

[137]  Y. Kamiya,et al.  Synthetic gene involving azobenzene-tethered T7 promoter for the photocontrol of gene expression by visible light. , 2015, ACS synthetic biology.

[138]  E. Stulz,et al.  Duplex stabilization and energy transfer in zipper porphyrin-DNA. , 2009, Angewandte Chemie.

[139]  Yujian He,et al.  Photoregulating RNA digestion using azobenzene linked dumbbell antisense oligodeoxynucleotides. , 2015, Bioconjugate chemistry.

[140]  Michael Famulok,et al.  Reversible Light Switch for Macrocycle Mobility in a DNA Rotaxane , 2012, Journal of the American Chemical Society.

[141]  W. Tan,et al.  Using photons to manipulate enzyme inhibition by an azobenzene-modified nucleic acid probe , 2009, Proceedings of the National Academy of Sciences.

[142]  U. Kolb,et al.  Ground- and First-Excited-Singlet-State Electric Dipole Moments of Some Photochromic Spirobenzopyrans in Their Spiropyran and Merocyanine Form † , 2002 .

[143]  M. Maeda,et al.  Photoresponsive 5'-cap for the reversible photoregulation of gene expression. , 2011, Bioorganic & medicinal chemistry letters.

[144]  Xiaobing Zhang,et al.  Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid. , 2012, ACS nano.

[145]  M. Komiyama,et al.  Enantioselective Incorporation of Azobenzenes into Oligodeoxyribonucleotide for Effective Photoregulation of Duplex Formation. , 2001, Angewandte Chemie.

[146]  E. Friedberg,et al.  DNA damage and repair , 2003, Nature.

[147]  Frank A. Leibfarth,et al.  Photoswitching using visible light: a new class of organic photochromic molecules. , 2014, Journal of the American Chemical Society.

[148]  D. Trauner,et al.  A roadmap to success in photopharmacology. , 2015, Accounts of Chemical Research.

[149]  M. Xie,et al.  Nucleoside‐Based Diarylethene Photoswitches: Synthesis and Photochromic Properties , 2016, Chembiochem : a European journal of chemical biology.

[150]  A. Jäschke,et al.  Reversibly photoswitchable nucleosides: synthesis and photochromic properties of diarylethene-functionalized 7-deazaadenosine derivatives. , 2010, Journal of the American Chemical Society.

[151]  Xiaolin Wang,et al.  Conformational switching of G-quadruplex DNA by photoregulation. , 2010, Angewandte Chemie.

[152]  S. Burdette,et al.  Photoisomerization in different classes of azobenzene. , 2012, Chemical Society reviews.

[153]  P. Nielsen,et al.  Synthesis of 5‐(1,2,3‐Triazol‐4‐yl)‐2′‐deoxyuridines by a Click Chemistry Approach: Stacking of Triazoles in the Major Groove Gives Increased Nucleic Acid Duplex Stability , 2007, Chembiochem : a European journal of chemical biology.

[154]  B. Baral,et al.  C5-functionalized DNA, LNA, and α-L-LNA: positional control of polarity-sensitive fluorophores leads to improved SNP-typing. , 2011, Chemistry.

[155]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1953, Nature.

[156]  Garry Berkovic,et al.  Spiropyrans and Spirooxazines for Memories and Switches. , 2000, Chemical reviews.

[157]  Mithun Biswas,et al.  Azobenzene photoisomerization-induced destabilization of B-DNA. , 2014, Biophysical journal.

[158]  Andrew A. Beharry,et al.  Azobenzene photoswitching without ultraviolet light. , 2011, Journal of the American Chemical Society.

[159]  J. Abe,et al.  Unusual negative photochromism via a short-lived imidazolyl radical of 1,1'-binaphthyl-bridged imidazole dimer. , 2013, Journal of the American Chemical Society.

[160]  O. Fedorova,et al.  Influence of DNA-binding on the photochromic equilibrium of a chromene derivative , 2011, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[161]  R R Breaker,et al.  Cleaving DNA with DNA. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[162]  C. Dohno,et al.  Photoswitchable molecular glue for DNA. , 2007, Journal of the American Chemical Society.

[163]  F. Lewis,et al.  Phototriggered DNA Hairpin Formation in a Stilbenediether-Linked Bis(oligonucleotide) Conjugate , 1999 .

[164]  Yanling Song,et al.  Single-molecule photon-fueled DNA nanoscissors for DNA cleavage based on the regulation of substrate binding affinity by azobenzene. , 2013, Chemical communications.

[165]  Ewan Birney,et al.  Towards practical, high-capacity, low-maintenance information storage in synthesized DNA , 2013, Nature.

[166]  D. Leigh,et al.  Synthetic molecular walkers. , 2014, Topics in current chemistry.

[167]  S. Santer,et al.  DNA compaction by azobenzene-containing surfactant. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[168]  C. Renner,et al.  Redox Potential of Azobenzene as an Amino Acid Residue in Peptides , 2007, Chembiochem : a European journal of chemical biology.

[169]  K. Matsuda,et al.  Molecular design strategy toward diarylethenes that photoswitch with visible light. , 2014, Journal of the American Chemical Society.

[170]  H. Asanuma,et al.  Visible-Light-Triggered Cross-Linking of DNA Duplexes by Reversible [2+2] Photocycloaddition of Styrylpyrene. , 2016, Chemistry.

[171]  S. Samanta,et al.  Red-Shifting Azobenzene Photoswitches for in Vivo Use. , 2015, Accounts of chemical research.

[172]  H. Dube,et al.  Hemithioindigo—an emerging photoswitch , 2015 .

[173]  Yangyang Yang,et al.  Photo-controllable DNA origami nanostructures assembling into predesigned multiorientational patterns. , 2012, Journal of the American Chemical Society.

[174]  Keiichi Namba,et al.  Photoresponsive DNA nanocapsule having an open/close system for capture and release of nanomaterials. , 2014, Chemistry.