Optimal Transport with Proximal Splitting

This article reviews the use of first order convex optimization schemes to solve the discretized dynamic optimal transport problem, initially proposed by Benamou and Brenier. We develop a staggered grid discretization that is well adapted to the computation of the $L^2$ optimal transport geodesic between distributions defined on a uniform spatial grid. We show how proximal splitting schemes can be used to solve the resulting large scale convex optimization problem. A specific instantiation of this method on a centered grid corresponds to the initial algorithm developed by Benamou and Brenier. We also show how more general cost functions can be taken into account and how to extend the method to perform optimal transport on a Riemannian manifold.

[1]  Julie Delon,et al.  Local Matching Indicators for Transport Problems with Concave Costs , 2011, SIAM J. Discret. Math..

[2]  Leonidas J. Guibas,et al.  A metric for distributions with applications to image databases , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[3]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[4]  L. D. Prussner,et al.  On the numerical solution of the equation ∂2z/∂x2 ∂2z/∂y2−(∂2z/∂x∂y)2=f and its discretizations. I , 1988 .

[5]  C. Villani Topics in Optimal Transportation , 2003 .

[6]  Patrick L. Combettes,et al.  A Monotone+Skew Splitting Model for Composite Monotone Inclusions in Duality , 2010, SIAM J. Optim..

[7]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[8]  C. Villani Optimal Transport: Old and New , 2008 .

[9]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[10]  J. Benamou A domain decomposition method for the polar factorization of vector-valued mappings , 1995 .

[11]  Michael Werman,et al.  Fast and robust Earth Mover's Distances , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[12]  J. Benamou NUMERICAL RESOLUTION OF AN \UNBALANCED" MASS TRANSPORT PROBLEM , 2003 .

[13]  Nelly Pustelnik,et al.  Parallel Proximal Algorithm for Image Restoration Using Hybrid Regularization , 2009, IEEE Transactions on Image Processing.

[14]  Haibin Ling,et al.  An Efficient Earth Mover's Distance Algorithm for Robust Histogram Comparison , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Jonathan E. Spingarn,et al.  Applications of the method of partial inverses to convex programming: Decomposition , 1985, Math. Program..

[16]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[17]  Yann Brenier,et al.  Weak Existence for the Semigeostrophic Equations Formulated as a Coupled Monge-Ampère/Transport Problem , 1998, SIAM J. Appl. Math..

[18]  Carola-Bibiane Schönlieb,et al.  Regularized Regression and Density Estimation based on Optimal Transport , 2012 .

[19]  Nicolas Papadakis,et al.  A Variational Model for Histogram Transfer of Color Images , 2011, IEEE Transactions on Image Processing.

[20]  Pierre Alliez,et al.  An Optimal Transport Approach to Robust Reconstruction and Simplification of 2d Shapes , 2022 .

[21]  U. Frisch,et al.  A reconstruction of the initial conditions of the Universe by optimal mass transportation , 2001, Nature.

[22]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[23]  M. Fortin,et al.  Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .

[24]  B. V. Dean,et al.  Studies in Linear and Non-Linear Programming. , 1959 .

[25]  B. V. Dean,et al.  Studies in Linear and Non-Linear Programming. , 1959 .

[26]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[27]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[28]  D. Gabay Applications of the method of multipliers to variational inequalities , 1983 .

[29]  Giuseppe Savaré,et al.  A new class of transport distances between measures , 2008, 0803.1235.

[30]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[31]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[32]  Ionel M. Navon,et al.  Data Assimilation for Geophysical Fluids , 2009 .

[33]  D. Bertsekas The auction algorithm: A distributed relaxation method for the assignment problem , 1988 .

[34]  Julie Delon,et al.  Movie and video scale-time equalization application to flicker reduction , 2006, IEEE Transactions on Image Processing.

[35]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Brendan Pass,et al.  Multi-marginal optimal transport on Riemannian manifolds , 2013, 1303.6251.

[37]  Patrick Clarysse,et al.  Optimal extended optical flow subject to a statistical constraint , 2010, J. Comput. Appl. Math..

[38]  Guillaume Carlier,et al.  Geodesics for a class of distances in the space of probability measures , 2012, 1204.2517.

[39]  Angelo Iollo,et al.  A lagrangian scheme for the solution of the optimal mass transfer problem , 2011, J. Comput. Phys..

[40]  Yann Brenier Mixed L 2 /wasserstein Optimal Mapping between Prescribed Densities Functions , 2000 .

[41]  J. A. Carrillo,et al.  Numerical Simulation of Diffusive and Aggregation Phenomena in Nonlinear Continuity Equations by Evolving Diffeomorphisms , 2009, SIAM J. Sci. Comput..

[42]  P. L. Combettes,et al.  A proximal decomposition method for solving convex variational inverse problems , 2008, 0807.2617.

[43]  Adam M. Oberman,et al.  A VISCOSITY SOLUTION APPROACH TO THE MONGE-AMP ERE FORMULATION OF THE OPTIMAL TRANSPORTATION PROBLEM , 2012, 1208.4873.

[44]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[45]  David W. Jacobs,et al.  Approximate earth mover’s distance in linear time , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[46]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[47]  Steven Haker,et al.  Minimizing Flows for the Monge-Kantorovich Problem , 2003, SIAM J. Math. Anal..

[48]  Allen R. Tannenbaum,et al.  An Efficient Numerical Method for the Solution of the L2 Optimal Mass Transfer Problem , 2010, SIAM J. Sci. Comput..

[49]  Xiaobing Feng,et al.  Mixed Finite Element Methods for the Fully Nonlinear Monge-Ampère Equation Based on the Vanishing Moment Method , 2007, SIAM J. Numer. Anal..

[50]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[51]  C. Villani,et al.  A MASS-TRANSPORTATION APPROACH TO SHARP SOBOLEV AND GAGLIARDO-NIRENBERG INEQUALITIES , 2004 .

[52]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[53]  Jean-David Benamou,et al.  Mixed L2-Wasserstein Optimal Mapping Between Prescribed Density Functions , 2001 .

[54]  Julien Rabin,et al.  Wasserstein Barycenter and Its Application to Texture Mixing , 2011, SSVM.

[55]  Guillaume Carlier,et al.  Barycenters in the Wasserstein Space , 2011, SIAM J. Math. Anal..

[56]  Brittany D. Froese A Numerical Method for the Elliptic Monge-Ampère Equation with Transport Boundary Conditions , 2011, SIAM J. Sci. Comput..

[57]  D. Birchall,et al.  Computational Fluid Dynamics , 2020, Radial Flow Turbocompressors.

[58]  Pierre Alliez,et al.  Noname manuscript No. (will be inserted by the editor) Feature-Preserving Surface Reconstruction and Simplification from Defect-Laden Point Sets , 2013 .

[59]  Daniel Matthes,et al.  A gradient flow scheme for nonlinear fourth order equations , 2010 .

[60]  M. V. D. Panne,et al.  Displacement Interpolation Using Lagrangian Mass Transport , 2011 .

[61]  Lei Zhu,et al.  Optimal Mass Transport for Registration and Warping , 2004, International Journal of Computer Vision.

[62]  hiroshi Onose,et al.  ON THE NUMERICAL SOLUTION OF AN EQUATION , 1965 .

[63]  R. Glowinski,et al.  An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge-Ampère equation in two dimensions. , 2006 .

[64]  M. Isabel Asensio,et al.  Mixed Finite Element Methods for a Class of Nonlinear Reaction Diffusion Problems , 2002, Neural Parallel Sci. Comput..

[65]  Mauro Dell'Amico,et al.  Assignment Problems , 1998, IFIP Congress: Fundamentals - Foundations of Computer Science.

[66]  Adam M. Oberman Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian , 2008 .

[67]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[68]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[69]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[70]  Julien Rabin,et al.  Wasserstein regularization of imaging problem , 2011, 2011 18th IEEE International Conference on Image Processing.

[71]  J.-C. Pesquet,et al.  A Douglas–Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery , 2007, IEEE Journal of Selected Topics in Signal Processing.

[72]  Quentin Mérigot,et al.  A Multiscale Approach to Optimal Transport , 2011, Comput. Graph. Forum.

[73]  Julie Delon,et al.  Fast Transport Optimization for Monge Costs on the Circle , 2009, SIAM J. Appl. Math..

[74]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[75]  Robert D. Russell,et al.  Optimal mass transport for higher dimensional adaptive grid generation , 2011, J. Comput. Phys..

[76]  R. McCann Polar factorization of maps on Riemannian manifolds , 2001 .

[77]  F. Bornemann,et al.  Finite-element Discretization of Static Hamilton-Jacobi Equations based on a Local Variational Principle , 2004, math/0403517.

[78]  Gui-Song Xia,et al.  Static and Dynamic Texture Mixing Using Optimal Transport , 2013, SSVM.