Environmental Status Assessment Using DNA Metabarcoding: Towards a Genetics Based Marine Biotic Index (gAMBI)

Marine ecosystem protection and conservation initiatives rely on the assessment of ecological integrity and health status of marine environments. The AZTI's Marine Biotic Index (AMBI), which consists on using macroinvertebrate diversity as indicator of ecosystem health, is used worldwide for this purpose. Yet, this index requires taxonomic assignment of specimens, which typically involves a time and resource consuming visual identification of each sample. DNA barcoding or metabarcoding are potential harmonized, faster and cheaper alternatives for species identification, although the suitability of these methods for easing the implementation of the AMBI is yet to be evaluated. Here, we analyze the requirements for the implementation of a genetics based AMBI (gAMBI), and show, using available sequence data, that information about presence/absence of the most frequently occurring species provides accurate AMBI values. Our results set the basics for the implementation of the gAMBI, which has direct implications for a faster and cheaper marine monitoring and health status assessment.

[1]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[2]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[3]  D. Hillis,et al.  Ribosomal DNA: Molecular Evolution and Phylogenetic Inference , 1991, The Quarterly Review of Biology.

[4]  P. Holland,et al.  A molecular analysis of the phylogenetic affinities of Saccoglossus cambrensis Brambell & Cole (Hemichordata). , 1991, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[5]  R. Leemans,et al.  Comparing global vegetation maps with the Kappa statistic , 1992 .

[6]  R. Vrijenhoek,et al.  DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. , 1994, Molecular marine biology and biotechnology.

[7]  J. Lake,et al.  Evidence from 18S ribosomal DNA that the lophophorates are protostome animals , 1995, Science.

[8]  G. Giribet,et al.  Evidence that two types of 18S rDNA coexist in the genome of Dugesia (Schmidtea) mediterranea (Platyhelminthes, Turbellaria, Tricladida). , 1996, Molecular biology and evolution.

[9]  Mark L. Blaxter,et al.  A molecular evolutionary framework for the phylum Nematoda , 1998, Nature.

[10]  M. Siddall,et al.  Higher level relationships of leeches (Annelida: Clitellata: Euhirudinea) based on morphology and gene sequences. , 1999, Molecular phylogenetics and evolution.

[11]  Ángel Borja,et al.  A Marine Biotic Index to Establish the Ecological Quality of Soft-Bottom Benthos Within European Estuarine and Coastal Environments , 2000 .

[12]  M. Whiting Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera , 2002 .

[13]  P. Hebert,et al.  Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[14]  C. Meyer Molecular systematics of cowries (Gastropoda: Cypraeidae) and diversification patterns in the tropics , 2003 .

[15]  D. Tautz,et al.  A plea for DNA taxonomy , 2003 .

[16]  R. Valente,et al.  A review of approaches for classifying benthic habitats and evaluating habitat quality. , 2004, Journal of environmental management.

[17]  Y. Passamaneck,et al.  Investigation of molluscan phylogeny using large-subunit and small-subunit nuclear rRNA sequences. , 2004, Molecular phylogenetics and evolution.

[18]  G. Purschke,et al.  A scaleless scale worm: Molecular evidence for the phylogenetic placement of Pisione remota (Pisionidae, Annelida) , 2005 .

[19]  K. Halanych,et al.  Holopelagic Poeobius meseres (“Poeobiidae,” Annelida) Is Derived From Benthic Flabelligerid Worms , 2005, The Biological Bulletin.

[20]  Paul D. N. Hebert,et al.  Identifying spiders through DNA barcodes , 2005 .

[21]  D. Tautz,et al.  Reverse taxonomy: an approach towards determining the diversity of meiobenthic organisms based on ribosomal RNA signature sequences , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[22]  M. Elliott,et al.  Marine monitoring: Its shortcomings and mismatch with the EU Water Framework Directive's objectives. , 2006, Marine pollution bulletin.

[23]  S. Cameron,et al.  Who will actually use DNA barcoding and what will it cost? , 2006, Systematic biology.

[24]  J. Landry,et al.  A universal DNA mini-barcode for biodiversity analysis , 2008, BMC Genomics.

[25]  S. Ratnasingham,et al.  Biological identifications through DNA barcodes: the case of the Crustacea , 2007 .

[26]  Ángel Borja,et al.  Assessing the environmental quality status in estuarine and coastal systems: Comparing methodologies and indices , 2008 .

[27]  Ola,et al.  United Nations convention on the law of the sea , 2008 .

[28]  R. Knight,et al.  Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers , 2008, Nucleic acids research.

[29]  Susan M. Huse,et al.  A Method for Studying Protistan Diversity Using Massively Parallel Sequencing of V9 Hypervariable Regions of Small-Subunit Ribosomal RNA Genes , 2009, PloS one.

[30]  Brian D. Fath,et al.  Review and evaluation of estuarine biotic indices to assess benthic condition , 2009 .

[31]  Abraham E. Tucker,et al.  Evaluating high‐throughput sequencing as a method for metagenomic analysis of nematode diversity , 2009, Molecular ecology resources.

[32]  Ángel Borja,et al.  Paradigmatic responses of marine benthic communities to different anthropogenic pressures, using M-AMBI, within the European Water Framework Directive , 2009 .

[33]  Juan Bald,et al.  Using multiple ecosystem components, in assessing ecological status in Spanish (Basque Country) Atlantic marine waters. , 2009, Marine pollution bulletin.

[34]  A. Radulovici,et al.  DNA barcoding of marine crustaceans from the Estuary and Gulf of St Lawrence: a regional‐scale approach , 2009, Molecular ecology resources.

[35]  Torsten Berg,et al.  Current status of macroinvertebrate methods used for assessing the quality of European marine waters: implementing the Water Framework Directive , 2009, Hydrobiologia.

[36]  T. Bruns,et al.  Quantifying microbial communities with 454 pyrosequencing: does read abundance count? , 2010, Molecular ecology.

[37]  D. Steinke,et al.  Biodiversity and phylogeography of Arctic marine fauna: insights from molecular tools , 2011, Marine Biodiversity.

[38]  Joachim Claudet,et al.  Human-driven impacts on marine habitats: A regional meta-analysis in the Mediterranean Sea , 2010 .

[39]  R. Giblin-Davis,et al.  Reproducibility of read numbers in high‐throughput sequencing analysis of nematode community composition and structure , 2009, Molecular ecology resources.

[40]  K. R. Clarke,et al.  Exploring the marine biotic index (AMBI): variations on a theme by Angel Borja. , 2010, Marine pollution bulletin.

[41]  R. Giblin-Davis,et al.  Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises , 2010, Molecular ecology.

[42]  Limin Fu,et al.  Artificial and natural duplicates in pyrosequencing reads of metagenomic data , 2010, BMC Bioinformatics.

[43]  A. Tsuda,et al.  Dissimilarity of Species and Forms of Planktonic Neocalanus Copepods Using Mitochondrial COI, 12S, Nuclear ITS, and 28S Gene Sequences , 2010, PloS one.

[44]  G. Carvalho,et al.  Systematic and Evolutionary Insights Derived from mtDNA COI Barcode Diversity in the Decapoda (Crustacea: Malacostraca) , 2011, PloS one.

[45]  Ane Iriondo,et al.  Implementation of the European Marine Strategy Framework Directive: a methodological approach for the assessment of environmental status, from the Basque Country (Bay of Biscay). , 2011, Marine pollution bulletin.

[46]  D. Baird,et al.  Environmental Barcoding: A Next-Generation Sequencing Approach for Biomonitoring Applications Using River Benthos , 2011, PloS one.

[47]  Christian L. Lauber,et al.  PrimerProspector: de novo design and taxonomic analysis of barcoded polymerase chain reaction primers , 2011, Bioinform..

[48]  N. Knowlton,et al.  PCR Primers for Metazoan Nuclear 18S and 28S Ribosomal DNA Sequences , 2012, PloS one.

[49]  P. Taberlet,et al.  Who is eating what: diet assessment using next generation sequencing , 2012, Molecular ecology.

[50]  S. Weisberg,et al.  Performance of Two Southern California Benthic Community Condition Indices Using Species Abundance and Presence-Only Data: Relevance to DNA Barcoding , 2012, PloS one.

[51]  Daniel R. Brumbaugh,et al.  An index to assess the health and benefits of the global ocean , 2012, Nature.

[52]  P. Taberlet,et al.  Towards next‐generation biodiversity assessment using DNA metabarcoding , 2012, Molecular ecology.

[53]  A. P. Valença,et al.  Macrobenthic community for assessment of estuarine health in tropical areas (Northeast, Brazil): review of macrofauna classification in ecological groups and application of AZTI Marine Biotic Index. , 2012, Marine pollution bulletin.

[54]  N. Baeshen,et al.  Biological Identifications Through DNA Barcodes , 2012 .

[55]  Douglas W. Yu,et al.  Testing three pipelines for 18S rDNA-based metabarcoding of soil faunal diversity , 2012, Science China Life Sciences.

[56]  Douglas W. Yu,et al.  Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring , 2012 .

[57]  I. Muxika,et al.  Assessing proposed modifications to the AZTI marine biotic index (AMBI), using biomass and production , 2012 .

[58]  Stéphane Audic,et al.  The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy , 2012, Nucleic Acids Res..

[59]  Naiara Rodríguez-Ezpeleta,et al.  Genomics in marine monitoring: new opportunities for assessing marine health status. , 2013, Marine pollution bulletin.

[60]  Douglas W. Yu,et al.  Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. , 2013, Ecology letters.

[61]  James G. Bellingham,et al.  Monitoring of harmful algal blooms in the era of diminishing resources: A case study of the U.S. West Coast , 2013 .

[62]  Angel Borja,et al.  Marine monitoring during an economic crisis: the cure is worse than the disease. , 2013, Marine pollution bulletin.

[63]  V. Ranwez,et al.  A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents , 2013, Frontiers in Zoology.

[64]  Paul D N Hebert,et al.  Advancing nematode barcoding: A primer cocktail for the cytochrome c oxidase subunit I gene from vertebrate parasitic nematodes , 2013, Molecular ecology resources.

[65]  J. Geller,et al.  Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all‐taxa biotic surveys , 2013, Molecular ecology resources.