Communication-Optimal Tilings for Projective Nested Loops with Arbitrary Bounds
暂无分享,去创建一个
[1] H. T. Kung,et al. I/O complexity: The red-blue pebble game , 1981, STOC '81.
[2] M. Morari,et al. Geometric Algorithm for Multiparametric Linear Programming , 2003 .
[3] Dror Irony,et al. Communication lower bounds for distributed-memory matrix multiplication , 2004, J. Parallel Distributed Comput..
[4] T. Tao,et al. Finite bounds for Hölder-Brascamp-Lieb multilinear inequalities , 2005, math/0505691.
[5] Stefán Ingi Valdimarsson. The Brascamp–Lieb Polyhedron , 2010, Canadian Journal of Mathematics.
[6] Katherine A. Yelick,et al. A Communication-Optimal N-Body Algorithm for Direct Interactions , 2013, 2013 IEEE 27th International Symposium on Parallel and Distributed Processing.
[7] James Demmel,et al. Communication lower bounds and optimal algorithms for programs that reference arrays - Part 1 , 2013, ArXiv.
[8] James Demmel,et al. Communication lower bounds and optimal algorithms for numerical linear algebra*† , 2014, Acta Numerica.
[9] Nicholas Knight,et al. Communication-Optimal Loop Nests , 2015 .
[10] James Demmel,et al. Parallelepipeds obtaining HBL lower bounds , 2016, ArXiv.
[11] Avi Wigderson,et al. Algorithmic aspects of Brascamp-Lieb inequalities , 2016, ArXiv.
[12] Bo Chen,et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications , 2017, ArXiv.
[13] Jack J. Dongarra,et al. The Design and Performance of Batched BLAS on Modern High-Performance Computing Systems , 2017, ICCS.
[14] Geoffrey E. Hinton,et al. Matrix capsules with EM routing , 2018, ICLR.
[15] Alexander Heinecke,et al. Anatomy of High-Performance Deep Learning Convolutions on SIMD Architectures , 2018, SC18: International Conference for High Performance Computing, Networking, Storage and Analysis.
[16] James Demmel,et al. Communication-Optimal Convolutional Neural Nets , 2018, ArXiv.
[17] Paul Barham,et al. Machine Learning Systems are Stuck in a Rut , 2019, HotOS.
[18] Julien Langou,et al. Automated derivation of parametric data movement lower bounds for affine programs , 2019, PLDI.
[19] E. Callahan. Berkeley , 2021, British Journal for the History of Philosophy.