Quantum Secure Direct Communication with Four-Particle Genuine Entangled State and Dense Coding

A quantum secure direct communication scheme using dense coding is proposed. At first, the sender (Alice) prepares four-particle genuine entangled states and shares them with the receiver (Bob) by sending two particles in each entangled state to him. Secondly, Alice encodes secret information by performing the unitary transformations on her particles and transmits them to Bob. Finally, Bob performs the joint measurements on his particles to decode the secret information. The two-step security test guarantees the security of communication.

[1]  S. Stepney,et al.  Searching for highly entangled multi-qubit states , 2005 .

[2]  He-Shan Song,et al.  Quantum secure direct communication scheme using a W state and teleportation , 2006 .

[3]  Liu Jun,et al.  Revisiting quantum secure direct communication with W state , 2006 .

[4]  V. Subrahmanyam,et al.  Multipartite entanglement in a one-dimensional time-dependent Ising model , 2004 .

[5]  Xiu Xiao-Ming,et al.  Quantum Secure Communication Using a Class of Three-Particle W State , 2008 .

[6]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[7]  Zhuo-Liang Cao,et al.  Scheme for implementing quantum information sharing via tripartite entangled state in cavity QED , 2007 .

[8]  Z. D. Wang,et al.  Multipartite quantum correlation and entanglement in four-qubit pure states , 2007 .

[9]  Zhuo-Liang Cao,et al.  Quantum dense coding via cavity decay , 2005, quant-ph/0510093.

[10]  Li Dong,et al.  MULTIPARTY CONTROLLED DETERMINISTIC SECURE QUANTUM COMMUNICATION THROUGH ENTANGLEMENT SWAPPING , 2008 .

[11]  Xue Zheng-Yuan,et al.  Scheme for sharing classical information via tripartite entangled states , 2006 .

[12]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[13]  Ya-Jun Gao,et al.  GENERAL: Construction and application of multi-partner communication network , 2008 .

[14]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[15]  Yaakov S Weinstein,et al.  Entanglement generation of nearly random operators. , 2005, Physical review letters.

[16]  Zhi-Xi Wang,et al.  Quantum Secure Conditional Direct Communication via EPR Pairs , 2005 .

[17]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[18]  Fuguo Deng,et al.  Quantum secure direct communication with high-dimension quantum superdense coding , 2005 .

[19]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[20]  Zhan-jun Zhang Comment on : Quantum direct communication with authentication , 2006, quant-ph/0604125.

[21]  Y. Yeo,et al.  Teleportation and dense coding with genuine multipartite entanglement. , 2005, Physical review letters.

[22]  Li Dong,et al.  Multiparty-controlled quantum secure direct communication , 2007 .

[23]  Chuan Wang,et al.  Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state , 2005 .

[24]  Florian Mintert,et al.  Measuring multipartite concurrence with a single factorizable observable. , 2006, Physical review letters.

[25]  Gavin K. Brennen An observable measure of entanglement for pure states of multi-qubit systems , 2003, Quantum Inf. Comput..

[26]  N. Gisin,et al.  From Bell's theorem to secure quantum key distribution. , 2005, Physical review letters.

[27]  M. Cao,et al.  Thermal entanglement between alternate qubits of a four-qubit heisenberg XX chain in a magnetic field , 2005 .

[28]  Hwayean Lee,et al.  Quantum direct communication with authentication , 2005, quant-ph/0512051.

[29]  F. L. Yan,et al.  A scheme for secure direct communication using EPR pairs and teleportation , 2004 .

[30]  A. J. Scott Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions , 2003, quant-ph/0310137.

[31]  G. Long,et al.  Controlled order rearrangement encryption for quantum key distribution , 2003, quant-ph/0308172.

[32]  D. Meyer,et al.  Global entanglement in multiparticle systems , 2001, quant-ph/0108104.

[33]  Jinhyoung Lee,et al.  Multipartite entanglement for entanglement teleportation , 2002, quant-ph/0201069.

[34]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[35]  P. Xue,et al.  Conditional efficient multiuser quantum cryptography network , 2002 .

[36]  Shou Zhang,et al.  Secure direct communication based on secret transmitting order of particles , 2006, quant-ph/0601119.

[37]  Xiu Xiao-Ming,et al.  Quantum Secure Direct Communication Using W State , 2008 .

[38]  Kaoru Shimizu,et al.  Communication channels secured from eavesdropping via transmission of photonic Bell states , 1999 .

[39]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[40]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[41]  D. Bruß Optimal Eavesdropping in Quantum Cryptography with Six States , 1998, quant-ph/9805019.

[42]  Zhang Zhan-jun,et al.  Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations , 2005 .

[43]  Andreas Buchleitner,et al.  Decoherence and multipartite entanglement. , 2004, Physical review letters.

[44]  Z. D. Wang,et al.  Multipartite entanglement in four-qubit cluster-class states , 2007, 0709.4642.

[45]  A. Plastino,et al.  Multiqubit systems: highly entangled states and entanglement distribution , 2007, 0803.3979.

[46]  Wang Chuan,et al.  Quantum secure direct communication and deterministic secure quantum communication , 2007 .

[47]  A. Osterloh,et al.  Constructing N-qubit entanglement monotones from antilinear operators (4 pages) , 2004, quant-ph/0410102.

[48]  B. Moor,et al.  Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.

[49]  Guo-Jian Yang,et al.  Generation and discrimination of a type of four-partite entangled state , 2008 .

[50]  Ping Zhou,et al.  Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs , 2006 .

[51]  Li Dong,et al.  Controlled deterministic secure quantum communication using five-qubit entangled states and two-step security test , 2009 .

[52]  Yaakov S. Weinstein,et al.  Matrix-element distributions as a signature of entanglement generation , 2005 .

[53]  A. Sudbery,et al.  How entangled can two couples get , 2000, quant-ph/0005013.