Contrapositive symmetry of fuzzy implications

[1]  János Fodor,et al.  A characterization of the Hamacher family of t -norms , 1994 .

[2]  János Fodor,et al.  A new look at fuzzy connectives , 1993 .

[3]  János Fodor,et al.  Fuzzy connectives via matrix logic , 1993 .

[4]  Sergei Ovchinnikov,et al.  On fuzzy strict preference, indifference, and incomparability relations , 1992 .

[5]  S. Ovchinnikov,et al.  On strict preference relations , 1991 .

[6]  J. Fodor On fuzzy implication operators , 1991 .

[7]  Philippe Smets,et al.  Implication in fuzzy logic , 1987, Int. J. Approx. Reason..

[8]  W. Wangming Fuzzy reasoning and fuzzy relational equations , 1986 .

[9]  Ronald R. Yager,et al.  An Approach to Inference in Approximate Reasoning , 1980, Int. J. Man Mach. Stud..

[10]  L. Kohout,et al.  FUZZY POWER SETS AND FUZZY IMPLICATION OPERATORS , 1980 .

[11]  M. J. Frank On the simultaneous associativity ofF(x,y) andx +y -F(x,y) , 1979 .

[12]  Brian R. Gaines,et al.  Foundations of fuzzy reasoning , 1976 .

[13]  D. Dubois,et al.  Fuzzy sets in approximate reasoning. I, Inference with possibility distributions , 1991 .

[14]  D. Dubois,et al.  A theorem on implication functions defined from triangular norms. , 1984 .

[15]  S. Weber A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms , 1983 .

[16]  Liu Dsosu,et al.  Fuzzy random measure and its extension theorem , 1983 .

[17]  Ladislav J. Kohout,et al.  Semantics of implication operators and fuzzy relational products , 1980 .

[18]  E. Trillas Sobre funciones de negación en la teoría de conjuntos difusos. , 1979 .