A novel approach for energy detector sensing time and periodic sensing interval optimization in cognitive radios

In this paper a new approach of optimizing the sensing time and periodic sensing interval for energy detectors has been explored. This new approach is built upon maximizing the probability of right detection, captured opportunities and transmission efficiency. The probability of right detection is defined as the probability of having no false alarm and correct detection. Optimization of the sensing time relies on maximizing the summation of the probability of right detection and the transmission efficiency while optimization of periodic sensing interval subjects to maximizing the summation of transmission efficiency and the captured opportunities. The optimum sensing time and periodic sensing interval are dependent on each other, hence, iterative approach to optimize them is applied and convergence criterion is defined. The simulations show that both converged sensing time and periodic sensing interval increase with the increase of the channel utilization factor, moreover, the probability of right detection, the transmission efficiency and the captured opportunities have been taken as the detector performance metrics and evaluated for different values of channel utilization factor and signal-to-noise ratio.

[1]  Mohamed Hamid DYNAMIC SPECTRUM ACCESS IN COGNITIVE RADIO NETWORKS : ASPECTS OF MAC LAYER SENSING , 2008 .

[2]  Wang Shu,et al.  A comparison of three classes of auto-correlation spectrum sensing techniques , 2009, 2009 International Conference on Apperceiving Computing and Intelligence Analysis.

[3]  Joseph Mitola,et al.  The software radio architecture , 1995, IEEE Commun. Mag..

[4]  Zhe Yang,et al.  On Spectrum Sharing and Dynamic Spectrum Allocation: MAC Layer Spectrum Sensing in Cognitive Radio Networks , 2010, 2010 International Conference on Communications and Mobile Computing.

[5]  Frank Eliassen,et al.  Energy minimization approach for optimal cooperative spectrum sensing in sensor-aided cognitive radio networks , 2010, 2010 The 5th Annual ICST Wireless Internet Conference (WICON).

[6]  Yonghong Zeng,et al.  Maximum-Minimum Eigenvalue Detection for Cognitive Radio , 2007, 2007 IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications.

[7]  Petri Mähönen,et al.  Evaluation of Spectrum Occupancy in Indoor and Outdoor Scenario in the Context of Cognitive Radio , 2007, 2007 2nd International Conference on Cognitive Radio Oriented Wireless Networks and Communications.

[8]  Kang G. Shin,et al.  Efficient Discovery of Spectrum Opportunities with MAC-Layer Sensing in Cognitive Radio Networks , 2008, IEEE Transactions on Mobile Computing.

[9]  Mohamed-Slim Alouini,et al.  On the Energy Detection of Unknown Signals Over Fading Channels , 2007, IEEE Transactions on Communications.

[10]  Sampath Rangarajan,et al.  Energy Detection Based Spectrum Sensing for Cognitive Radio: An Experimental Study , 2010, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010.

[11]  Ian F. Akyildiz,et al.  Optimal spectrum sensing framework for cognitive radio networks , 2008, IEEE Transactions on Wireless Communications.

[12]  H. Tang,et al.  Some physical layer issues of wide-band cognitive radio systems , 2005, First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005..

[13]  Zhai Xuping,et al.  Feature Detection Based on Multiple Cyclic Frequencies in Cognitive Radios , 2008, 2008 China-Japan Joint Microwave Conference.

[14]  Chandra R. Murthy,et al.  Performance comparison of energy, matched-filter and cyclostationarity-based spectrum sensing , 2010, 2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).