Probing 3D and NLTE models using APOGEE observations of globular cluster stars

Context. Hydrodynamical (or 3D) and non-local thermodynamic equilibrium (NLTE) effects are known to affect abundance analyses. However, there are very few observational abundance tests of 3D and NLTE models. Aims. We developed a new way of testing the abundance predictions of 3D and NLTE models, taking advantage of large spectroscopic survey data. Methods. We use a line-by-line analysis of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra (H band) with the Brussels Automatic Code for Characterizing High accUracy Spectra (BACCHUS). We compute line-by-line abundances of Mg, Si, Ca, and Fe for a large number of globular cluster K giants in the APOGEE survey. We compare this line-by-line analysis against NLTE and 3D predictions. Results. While the 1D–NLTE models provide corrections in the right direction, there are quantitative discrepancies between different models. We observe a better agreement with the data for the models including reliable collisional cross-sections. The agreement between data and models is not always satisfactory when the 3D spectra are computed in LTE. However, we note that for a fair comparison, 3D corrections should be computed with self-consistently derived stellar parameters, and not on 1D models with identical stellar parameters. Finally, we focus on 3D and NLTE effects on Fe lines in the H band, where we observe a systematic difference in abundance relative to the value from the optical. Our results suggest that the metallicities obtained from the H band are more accurate in metal-poor giants. Conclusions. Current 1D–NLTE models provide reliable abundance corrections, but only when the atom data and collisional cross-sections are accurate and complete. Therefore, we call for more atomic data for NLTE calculations. In contrast, we show that 3D corrections in LTE conditions are often not accurate enough, thus confirming that 3D abundance corrections are only valid when NLTE is taken into account. Consequently, more extended self-consistent 3D–NLTE computations need to be made. The method we have developed for testing 3D and NLTE models could be extended to other lines and elements, and is particularly suited for large spectroscopic surveys.

[1]  P. Bonifacio,et al.  Study of the departures from LTE in the unevolved stars infrared spectra , 2020, Monthly Notices of the Royal Astronomical Society.

[2]  M. Shetrone,et al.  NLTE for APOGEE: simultaneous multi-element NLTE radiative transfer , 2020, Astronomy & Astrophysics.

[3]  H. Rix,et al.  Non-LTE chemical abundances in Galactic open and globular clusters , 2019, Astronomy & Astrophysics.

[4]  M. Asplund,et al.  3D non-LTE line formation of neutral carbon in the Sun , 2019, Astronomy & Astrophysics.

[5]  D. A. García-Hernández,et al.  Homogeneous analysis of globular clusters from the APOGEE survey with the BACCHUS code – II. The Southern clusters and overview , 2018, Monthly Notices of the Royal Astronomical Society.

[6]  P. Bonifacio,et al.  Systematic investigation of chemical abundances derived using IR spectra obtained with GIANO , 2018, Astronomy & Astrophysics.

[7]  N. Feautrier,et al.  Ca line formation in late-type stellar atmospheres , 2015, Astronomy & Astrophysics.

[8]  B. Gustafsson,et al.  High-precision stellar abundances of the elements: methods and applications , 2018, The Astronomy and Astrophysics Review.

[9]  L. Mashonkina,et al.  NLTE Line Formation for Mg i and Mg ii in the Atmospheres of B–A–F–G–K Stars , 2018, The Astrophysical Journal.

[10]  P. Bonifacio,et al.  Abundances of Mg and K in the atmospheres of turn-off starsin Galactic globular cluster 47 Tucanae , 2018, Astronomy & Astrophysics.

[11]  F. Thévenin,et al.  An empirical recipe for inelastic hydrogen-atom collisions in non-LTE calculations , 2016, Astronomy & Astrophysics.

[12]  L. Mashonkina,et al.  Influence of inelastic collisions with hydrogen atoms on the non-LTE modelling of Ca I and Ca II lines in late-type stars , 2017, 1707.04399.

[13]  P. Barklem,et al.  Inelastic e+Mg collision data and its impact on modelling stellar and supernova spectra , 2017, 1706.03399.

[14]  I. Hubeny,et al.  A brief introductory guide to TLUSTY and SYNSPEC , 2017, 1706.01859.

[15]  M. Asplund,et al.  Non-LTE line formation of Fe in late-type stars – IV. Modelling of the solar centre-to-limb variation in 3D , 2017, 1703.04027.

[16]  Aniruddha R. Thakar,et al.  Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe , 2017, 1703.00052.

[17]  A. Derevianko,et al.  Transition rates and radiative lifetimes of Ca I , 2017, 1702.03473.

[18]  C. Prieto,et al.  NLTE ANALYSIS OF HIGH-RESOLUTION H-BAND SPECTRA. I. NEUTRAL SILICON , 2016, 1610.05888.

[19]  C. Prieto,et al.  NLTE ANALYSIS OF HIGH-RESOLUTION H-BAND SPECTRA. II. NEUTRAL MAGNESIUM , 2016, 1610.05893.

[20]  Paul S. Barklem,et al.  3D NLTE analysis of the most iron-deficient star, SMSS0313-6708 , 2016, 1609.07416.

[21]  Y. Pakhomov,et al.  Influence of departures from LTE on calcium, titanium, and iron abundance determinations in cool giants of different metallicities , 2016, 1609.02731.

[22]  M. Asplund,et al.  Non-LTE line formation of Fe in late-type stars – III. 3D non-LTE analysis of metal-poor stars , 2016, 1608.06390.

[23]  Jian-rong Shi,et al.  Influence of inelastic collisions with hydrogen atoms on the formation of AlI and SiI lines in stellar spectra , 2016, 1605.02957.

[24]  Y. Elsworth,et al.  An accurate and self-consistent chemical abundance catalogue for the APOGEE/Kepler sample , 2016, 1604.08800.

[25]  E. Caffau,et al.  Lithium spectral line formation in stellar atmospheres. The impact of convection and NLTE effects , 2015, 1512.08999.

[26]  P. Barklem,et al.  Mg line formation in late-type stellar atmospheres: II. Calculations in a grid of 1D models , 2015, 1510.05165.

[27]  Tucson,et al.  The photospheric solar oxygen project: IV. 3D-NLTE investigation of the 777 nm triplet lines , 2015, 1508.03487.

[28]  F. Ferraro,et al.  A CHEMICAL TROMPE-L’ŒIL: NO IRON SPREAD IN THE GLOBULAR CLUSTER M22 , 2015, 1507.01596.

[29]  N. Feautrier,et al.  Mg line formation in late-type stellar atmospheres - I. The model atom , 2015, 1504.07593.

[30]  U. Munari,et al.  The GALAH survey: scientific motivation , 2015, Monthly Notices of the Royal Astronomical Society.

[31]  D. A. García-Hernández,et al.  EXPLORING ANTICORRELATIONS AND LIGHT ELEMENT VARIATIONS IN NORTHERN GLOBULAR CLUSTERS OBSERVED BY THE APOGEE SURVEY , 2015, 1501.05127.

[32]  Annie C. Robin,et al.  ABUNDANCES, STELLAR PARAMETERS, AND SPECTRA FROM THE SDSS-III/APOGEE SURVEY , 2015, 1501.04110.

[33]  Scott W. Fleming,et al.  THE DATA REDUCTION PIPELINE FOR THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2015, 1501.03742.

[34]  R. Kudritzki,et al.  RED SUPERGIANT STARS AS COSMIC ABUNDANCE PROBES. III. NLTE EFFECTS IN J-BAND MAGNESIUM LINES , 2014, 1412.6527.

[35]  D. Kelson,et al.  A SEARCH FOR STARS OF VERY LOW METAL ABUNDANCE. VI. DETAILED ABUNDANCES OF 313 METAL-POOR STARS , 2014, 1403.6853.

[36]  M. Bergemann Analysis of Stellar Spectra with 3-D and NLTE Models , 2014, 1403.3089.

[37]  T. Nordlander,et al.  NLTE Radiative Transfer in Cool Stars , 2014 .

[38]  B. Smalley,et al.  Determination of Atmospheric Parameters of B-, A-, F- and G-Type Stars: Lectures from the School of Spectroscopic Data Analyses , 2014 .

[39]  Sofia Randich,et al.  The Gaia-ESO Large Public Spectroscopic Survey , 2013 .

[40]  D. O. Astronomy,et al.  Exploring the Milky Way stellar disk - A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood , 2013, 1309.2631.

[41]  C. Prieto,et al.  CALIBRATIONS OF ATMOSPHERIC PARAMETERS OBTAINED FROM THE FIRST YEAR OF SDSS-III APOGEE OBSERVATIONS , 2013, 1308.6617.

[42]  M. Asplund,et al.  The lithium isotopic ratio in very metal-poor stars , 2013, 1305.6564.

[43]  L. Mashonkina Review: progress in NLTE calculations and their application to large data-sets , 2013, Proceedings of the International Astronomical Union.

[44]  Z. Magic,et al.  The Stagger-grid: A grid of 3D stellar atmosphere models - I. Methods and general properties , 2013, 1302.2621.

[45]  P. Bogdanovich,et al.  Atomic Data and Nuclear Data Tables , 2013 .

[46]  R. Kudritzki,et al.  RED SUPERGIANT STARS AS COSMIC ABUNDANCE PROBES. II. NLTE EFFECTS IN J-BAND SILICON LINES , 2012, 1212.2649.

[47]  G. Bruce Berriman,et al.  Astrophysics Source Code Library , 2012, ArXiv.

[48]  Maria Bergemann,et al.  Non‐LTE line formation of Fe in late‐type stars – I. Standard stars with 1D and 〈3D〉 model atmospheres , 2012, 1207.2455.

[49]  P. Bonifacio,et al.  NLTE determination of the calcium abundance and 3D corrections in extremely metal-poor stars , 2012, 1204.1139.

[50]  R. Kudritzki,et al.  RED SUPERGIANT STARS AS COSMIC ABUNDANCE PROBES: NLTE EFFECTS IN J-BAND IRON AND TITANIUM LINES , 2012, 1204.0511.

[51]  Sergio Ortolani,et al.  The Gaia-ESO Public Spectroscopic Survey , 2012 .

[52]  M. Asplund,et al.  Simulations of the solar near-surface layers with the CO5BOLD, MURaM, and Stagger codes , 2012, 1201.1103.

[53]  W. Schaffenberger,et al.  Simulations of stellar convection with CO5BOLD , 2011, J. Comput. Phys..

[54]  B. Plez,et al.  Radiative hydrodynamics simulations of red supergiant stars - IV. Gray versus non-gray opacities , 2011, 1109.3619.

[55]  F. Th'evenin,et al.  A grid of non-local thermodynamic equilibrium corrections for magnesium and calcium in late-type giant and supergiant stars: application to Gaia , 2011, 1107.6015.

[56]  F. Grupp,et al.  A non-LTE study of neutral and singly-ionized iron line spectra in 1D models of the Sun and selected late-type stars ? , 2011, 1101.4570.

[57]  N. Feautrier,et al.  Inelastic Mg+H collision data for non-LTE applications in stellar atmospheres , 2010, 1203.4877.

[58]  Robert Barkhouser,et al.  The Apache Point Observatory Galactic Evolution Experiment (APOGEE) , 2007, Astronomical Telescopes + Instrumentation.

[59]  Å. Nordlund,et al.  Accurate Radiation Hydrodynamics and MHD Modeling of 3‐D Stellar Atmospheres , 2009 .

[60]  S. Lucatello,et al.  Na-O Anticorrelation and HB. VII. The chemical composition of first and second-generation stars in 15 globular clusters from GIRAFFE spectra , 2009, 0909.2938.

[61]  Garching,et al.  Na-O anticorrelation and HB - VIII. Proton-capture elements and metallicities in 17 globular clusters from UVES spectra , 2009, 0909.2941.

[62]  M. Asplund,et al.  Oxygen lines in solar granulation. I. Testing 3D models against new observations with high spatial a , 2009, 0909.2307.

[63]  T. Beers,et al.  The metal–poor end of the Spite plateau , 2009, Proceedings of the International Astronomical Union.

[64]  P. Bonifacio,et al.  The photospheric solar oxygen project. I. Abundance analysis of atomic lines and influence of atmosp , 2008, 0805.4398.

[65]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[66]  J. G. Hernández,et al.  Hydrodynamical Model Atmospheres of Metal‐Poor Stars , 2008 .

[67]  M. Asplund,et al.  The Chemical Compositions of the Extreme Halo Stars HE 0107–5240 and HE 1327–2326 Inferred from Three-dimensional Hydrodynamical Model Atmospheres , 2006, astro-ph/0605219.

[68]  Walter A. Siegmund,et al.  # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 2.5 m TELESCOPE OF THE SLOAN DIGITAL SKY SURVEY , 2005 .

[69]  T. Emonet,et al.  Simulations of magneto-convection in the solar photosphere Equations, methods, and results of the MURaM code , 2005 .

[70]  C. Prieto,et al.  Center-to-limb variation of solar line profiles as a test of NLTE line formation calculations , 2004, astro-ph/0405154.

[71]  A. Vögler,et al.  Three-dimensional simulations of magneto-convection in the solar photosphere , 2004 .

[72]  D. Vrinceanu Electron impact ionization of Rydberg atoms , 2003 .

[73]  A. Korn,et al.  Kinetic equilibrium of iron in the atmospheres of cool stars - III. The ionization equilibrium of selected reference stars , 2003, astro-ph/0306337.

[74]  M. Asplund,et al.  Multi-level 3D non-LTE computations of lithium lines in the metal-poor halo stars HD 140283 and HD 84937 , 2003, astro-ph/0302406.

[75]  L. Wallace,et al.  An atlas of the solar spectrum in the infrared from 1850 to 9000 cm-1 (1.1 to 5.4 μm), revised , 2003 .

[76]  M. Asplund,et al.  Signatures of Convection in the Spectrum of Procyon: Fundamental Parameters and Iron Abundance , 2001, astro-ph/0111055.

[77]  Klaus Galsgaard,et al.  Heating and activity of the solar corona: 1. Boundary shearing of an initially homogeneous magnetic field , 1996 .

[78]  D. Lambert Quantitative stellar spectroscopy with large optical telescopes , 1993 .

[79]  B. Kaulakys Free electron model for collisional angular momentum mixing of high Rydberg atoms , 1991 .

[80]  J. Monkman,et al.  Setting the scene. , 2019, Nursing the elderly : in hospital, homes and the community.

[81]  B. Kaulakys Broadening and shift of Rydberg levels by elastic collisions with rare-gas atoms , 1984 .

[82]  M. Seaton The Impact Parameter Method for Electron Excitation of Optically Allowed Atomic Transitions , 1962 .

[83]  D. R. Bates,et al.  Atomic and molecular processes , 2012 .